L4 eXperimentaI Kern6|
Reference Manual

Version X.2

System Architecture Group
Dept. of Computer Science
Universitt Karlsruhe
(L4Ka Team)
l4spec@l4ka.org

Document Revision 5
June 4, 2004

Copyright(© 2001-2004 by System Architecture Group, Department of Computer Science, Uaiviéesisruhe.

THIS SPECIFICATION IS PROVIDED "AS IS” WITHOUT ANY WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFI-
CATION OR SAMPLE.

Permission to copy and distribute verbatim copies of this specification in any medium for any purpose without fee or royalty is hereby granted. No right to
create modifications or derivates is granted by this license. The L4Ka Team may make changes to this specification at any time, without notice. The latest
revision of this document is availablefzttp://I4ka.org/

http://l4ka.org/

Contents

About This Manual vii
Introductory Remarks e e Vii.
Understanding This Document viii .
Notation e e iX
Usingthe APL . . . L L X
Revision History e e Xi
Basic Kernel Interface 1
1.1 KernelInterface Page 2.
1.2 KERNELINTERFACE . .+« v v vt i i i e e e e e e e e e e e e e e s s e e e e 7
1.3 Virtual Registers 11
Threads 13
2.1 Threadld e 14
2.2 Thread Control Registers (TCRS) o 0 i e e e e e e e e e e e e e 16.
2.3 EXCHANGEREGISTERS . .« v v v v vt i e e e e e e e e e e e e e e e 18
2.4 THREADCONTROL . . v v v it e i e e e e e e e e e e e e e e e e e e 22
Scheduling 25
3.1 CIoCK . . e 26
3.2 SYSTEMCLOCK . .« o it it e e e e e e e 27
3.3 TiMe . . o 28
3.4 THREADSWITCH . . v v v vt e s e e e 30
3.5 SCHEDULE . . o o it e e e e e e e e e e e 31
3.6 PreemptFlags 34.
Address Spaces and Mapping 35
4.1 FPage . . . oo e 36
4.2 UNMAP . . o 38
4.3 PACECONTROL © o v v v v v v e e e e e e e e e e e e e e e e e e 41
IPC 45
5.1 Messages And Message Registers (MRS) 46. .
52 Mapltem 51
5.3 Grantltem 53
5.4 Stringltem L e 54
5.5 String Buffers And Buffer Registers (BRS) 57.
5.6 IPC . . . 59
Miscellaneous 67
6.1 ExceptionHandler e 68
6.2 CopFlags o 69
6.3 PROCESSORCONTROL . . v v v v v e 70
6.4 MEMORYCONTROL . .« v v i it e i e 72
Protocols 75
7.1 Thread Start Protocol e 76.
7.2 Interrupt Protocol 77
7.3 Pagefault Protocol e e e e e 78.
7.4 Preemption Protocol L e 79.
7.5 Exception Protocol e e 80
7.6 SigmaO RPCprotocol e 81.

7.7 GenericBooting 84

A

H

CONTENTS
IA-32 Interface 87
Al Virtual ReQIStErS o 88
A2 Systemcalls 91
A3 KernelFeatures 94
A4 TO-POrts 95
A5 Space Control e 926
A.6 Cacheability Hints e e e 97
A7 Memory Attributes L L 98
A.8 Exception Message Format 99.
A.9 Processor Mirroring o e e 100
A0 BOOLING 101
IA-64 Interface 103
B.1 Virtual Registers 104
B.2 PALANd SALACCESS it e e e 106
B.3 Systemcalls 107
B.4 PCIlConfiguration Space 112.
B.5 Cacheability Hints e 113
B.6 Memory Attributes 114
B.7 Memory DesCriptors e e e 115
B.8 Exception Message Format 116.
PowerPC Interface 117
C.1 Virtual Registers e e 118
C.2 Systemcalls e e e 12Q
C.3 Memory Attributes e 124
C.4 Exception Message Format 125.
C.5 Processor Mirroring o o e e 127
C.6 BOOtiNg 128
PowerPC64 Interface 129
D.1 Virtual Registers e 130
D.2 Systemcalls e e 132
D.3 Memory Attributes L 137
D.4 Exception Message Format e 138.
D.5 B0OOtNG o e 140
Alpha Interface 141
E.1 Virtual Registers e e e e e e e 142
E.2 Systemcalls. 144
E.3 BOOUNG e e e 148
MIPS-64 Interface 149
F.1 Virtual Registers e 150
F.2 Systemcalls e 152
F.3 Memory Attributes e 157
F.4 Exception Message Format 158.
F5 BOOUNG o o o 160
AMDG64 Interface 161
G.1 Virtual Registers e e 162
G.2 Systemcalls 165
G.3 10-POrtS . . . o o 170
G.4 Cacheability Hints 171
G.5 Memory Attributes e 172
G.6 Exception Message Format 173.
G.7 Processor Mirroring o 0 i e e e e 174
G.8 Booting e 175
SPARC V9 Interface 177
H.1 Virtual Registers e 178
H.2 Systemcalls 180

CONTENTS Y
| ARM Interface 185
L1 Virtual ReISters e 186
1.2 Systemcalls e 188
.3 Memory Attributes L 191
.4 Space Control e 192
I.5 Exception Message Format e 193.
.6 BOOING e e e 194
J Generic BootInfo 195
J.1 GenericBootInfo 196
J.2 BootinfoRecords 198
K Development Remarks 201
K.1 ExceptionHandling 201
Table of Procs, Types, and Constants 203
Index 211

vi

CONTENTS

About This Manual

Introductory Remarks

Purpose of This Document

This L4 Reference Manual serves as defining document for all L4 APIs and ABIs. Primarily, it addresses L4 microkernel
implementors as API/ABI suppliers and code-generator or library implementors as API/ABI users. The reference manual
assumes intimate knowledge of basic L4 concepts and hardware architecture. Its key point is precise definition, not
explanation and illustration. The

L4 System Programmer’s Manual

is intended to support programmers using L4. It explains and illustrates fundamental concepts and describes in more
detail how (and why) to use which function, etc.

Maintainers

The document is maintained by the following members of the L4Ka Team:
e Uwe Dannowski (ud3@ira.uka.de)

e Joshua LeVasseur (jti@ira.uka.de)
e Espen Skoglund (esk@ira.uka.de)
e Volkmar Uhlig (volkmar@ira.uka.de)

Credits

This manual is based on a final draft Bychen Liedtke It reflects his outstanding work on the L4 micro-
kernel and systems research in general. Only his vision of system design made this work possible. Jochen
defined the state of the art of microkernel design for nearly a decade. We thank him for his support and try
to continue the work in his spirit.

Helpful contributions for improving this reference manual and the L4 interface came from many persons, in particular
from Alan Au, Marcus Brinkmann, Kevin Elphinstone, Bryan Ford, Andreas Haeberlen, Hernéatig,lEernot Heiser,
Michael Hohmuth, Trent Jaeger, Jorkder, Frank Mehnert, Yoonho Park, Marc Salem, Carl van Schaik, Sebastian
Schbnberg, Cristan Szmajda, Harvey Tuch, Marcudpy Neal Walfield, Adam Wiggins, Simon Winwood, and Jean
Wolter.

Document History

draft by Jochen Liedtke ?7?/?? - 06/01
review by L4Ka Team 06/01 - 09/01
L4 developers review Q4/01
release 01/02

viii ABOUT THIS MANUAL

Understanding This Document

This L4 Reference Manual defines the generic API for all 32-bit and 64-bit machines. As such, the generic reference
manual is independent of specific processor architectures. It is complemented by processor-specific ABI specifications.
Some of them can be found in the appendix of this document.

In this document, we differentiate betwekogical Interface, Generic Binary Interface, Generic Programming Inter-
face, Convenience Programming InterfaoelProcessor-specific Binary Interface.

Logical Interface The logical interface defines all concepts and logical objects such as system-call operations,
logical data objects, data types and their semantics. Altogether, they form the logical L4 API.

Generic Binary Interface
Binary representations of most data types and generic data objects are defined independently of
specific processors (although there are two different versions, one for 32-bit and a second one
for 64-bit processors). Both versions together form the generic binary interface of L4.

From a purist point of view, logical interface plus generic binary interface could be regarded as a complete specification of
the hardware-independent L4 microkernel interface. However, for ease-of-use and standardization reasons, the mentioned
two fundamental interfaces are complemented by two more interface classes:

Generic Programming Interface
The generic programming interface defines the objects of the logical interface and the generic
binary interface as pseudo C++ classes. The language bindings for regular C is for the most part
identical to C++. For the cases where the C language causes function naming conflicts, the C
version of the function name is given in brackets.
For the time being, only the C and C++ versions of the API are specified. The concrete syntax
of other language interfaces will be left open. Later on, all language bindings will be included
in the generic programming interface.

Convenience Programming Interface
This interface is not part of the L4 microkernel specification in the strict sense. All of its data
types and procedures can be implemented using the generic programming interface. Strictly
speaking, it is an interface on top of the microkernel that makes the most common operations
more easily usable for the programmer.
Itis important to understand that convenience and ease-of-use, not completeness, is the criterion
for this interface. The convenience programming interface supports programmers by offering
operations that together cover about 95% of the required microkernel functionality. For the
remaining 5%, the programmer has to use the basic (not so convenient) operations of the generic
programming interface.
Obviously, the convenience programming interface is not mandatory. Consequently, from a
minimalist point of view, there is no need to include it in the generic L4 specification.

Nevertheless, for reasons of standardization and thus portability of software, every
complete L4 language binding has to include the entire convenience programming
interface.

Implementation remark: Although the convenience interfemebe completely implemented

on top of the generic programming interface, i.e., processor independently, the implementor
of the convenience interfageayimplement it hardware-dependently and thus incorporate any
optimization that becomes possible through a specific processor-specific binary interface.

The last interface class is not part of the generic L4 API specification.

Processor-specific Binary Interface
Defines the processor-specific binary interface.

ABOUT THIS MANUAL iX

Notation

Basic Data Types

This reference manual describes the L4 API and ABI for both 32-bit and 64-bit processors. The data type Word denotes
a 32-bit unsigned integer on a 32-bit processor and a 64-bit unsigned integer on a 64-bit processor. Word64, Word32, and
Word16 denote 64, 32, and 16-bit words independent of the processor type.

Privileged Threads

Some system calls can only be executed by privileged threads. Any thread belonging to the same address space as one of
the initial threads created by the kernel upon boot-time (see page 84) are treated as privileged.

Bit Fields

Bit-field lengths are denoted as subscripts) wherei relates to a 32-bit processor ajtb a 64-bit processor. Bit-field
subscripts;) specify bit fields that have the same size for both 32-bit and 64-bit processors. Byte offsets are given as
+i / & j for 32-bit and 64-bit processors. If all bit-fields of a specified word only adds up to 32 bits, the remaining upper
32 bits on 64-bit processors aradefinedr ignored

Undefined, Ignored, and Unchanged

Output parameters or bit fields caniloedefinedCorresponding parameters or fields are denoted
by ~. They have no defined value on output, i.e., they may have any value or may even be
unaccessible. Any algorithm relying on the value of undefined parameters or bit fields is defined
to be incorrect.

B Input parameters or bit fields can be specifiejasred denoted by —. Such parameters or fields
can hold any value without affecting the invoked service. — is also used to define bit fields that
are available for additional information. For example, fpage denotations contain some ignored
bits that are used for access control bits in some system calls.

E In processor-specific interfaces, registers are sometimes defined to be unchanged. This is de-
noted by=.

Upward Compatibility

The following holds for future API versions and sub-versions that are specifiegvaard-compatibldo the current
version.

Output parameters and bit fields.
Fields currently defined as undefined)(may be specified as defined. Such newly defined fields
will only deliver additional information. They can be ignored if the system call is used exactly
like specified in the current API.

Input parameters and bit fields.
Fields currently defined as ignored (—) may be specified as defined. However, the content of such
fields will be only relevant for newly defined features. Such fields will be ignored if a system
call is used with the “old” semantics specified in this API.

X ABOUT THIS MANUAL

Using the API

Naming

A programmer can use all function, type, and constant definitions defined in the generic and convenience programming
interfaces throughout this manual. All definitions must, however, be prefixed with the strin) 4hd type names

must contain the t” suffix (e.g., use “L4lpc ()” and “L4_MsgTagt” rather than “Ipc ()” and “MsgTag”). The interfaces

are currently only defined for C++ and C. In some cases the naming used for function names causes conflicts in the C
language. These conflicts must be resolved using the alternative name specified in brackets after the function definition.

Include Files

The relevant include files containing the required definitions and declarations are specified in the beginning of the generic
and convenience interface sections. In general there is one include file for each chapter in the manual. If only the basic
L4 data types are needed they can be included usiftypes.h-.

ABOUT THIS MANUAL Xi

Revision History

Revision 1

Intial revision.

Revision 2

Clarified the specification of the kernel-interface page and kernel configuration page magic.

UntypedWords and Stringltems Acceptor constants collided with function UntypedWords(MsgTag) and Strin-
gltems(MsgTag) function declaration. Renamed to UntypedWordsAcceptor and StringltemsAcceptor.

Changed kernel ids for L4Ka kernels.
Fixed return types for operators on the Time type.

Changedwrz access rights in fpages tavz. Also changedV RX reference bits in fpages returned fromnidap
system call taRW X..

Renamed Put functions operating on MsgBuffer to Append.

Address space deletion is now performed by deleting the last thread of an AS. This makes creation and deletion
symmetrical (via ThreadControl). Before, all threads but the last were deleted by ThreadControl, and the last by
SpaceControl.

Added functions for creating ThreadIDs and for retrieving version and thread numbers from them. Fixed size of
MyLocalld and MyGloballd TCRs.

Specified that the first three thread version numbers available for user threads are dediggted tand root task
respectively.

Changed the encoding pfin the magic field of the KIP back to OxE6 to be compatible with previous versions of the
kernel.

Changed memory descriptors (e.g., dedicated memory) in the kernel-interface page and kernel configuration page to
use an array of typed descriptors instead of a static number of predefined ones.

Added an appendix for the PowerPC interface.

Added Niltag MsgTag constant.

Decreased size of MsgBuffer structure to 32.

Changed single Fpage& argument of Unmap() and Flush() into pass by value.

Changed the ia32 kernel feature string “small” to “smallspaces”.

Added appendix for the ia64 interface.

Changed the ia32 IPC and LIPC ABI to be better suitable for common hardware featuring sysenter/sysexit and gcc.
Added ProcDesc convenience functions.

Specified which include files to use for the various parts of the API.

Allow privileged threads to access ia32 Model-Specific Registers.

Changed the ia64 ABI for system-call links and tire nd Lipc system-calls.

The UTCB location of a new thread is now explicitly specified by a parameter toHREADCONTROL system-call.

Added C versions of conflicting function names.

Xii ABOUT THIS MANUAL

— Added a number of convenience functions for fpages, map items, grant items, string items and kernel interface page
fields.

— Added description of the send base in map and grant items.
— Changed subversion numbering for Version X.2 and Version 4 API.
— Renamed the XferTimeout TCR to XferTimeouts and split into separate send and receive timeouts.

— Added two thread specific words to each the architecture specific TCR sections. These words are free to be used by,
e.g., IDL compilers.

— Changed name of L4Ka kernels to the official name. Added L4Ka::Strawberry.

— Added appendices for Alpha and MIPS64.

Revision 3

Clarified description of theupplierfield in the kernel-interface page.

Added NumMemoryDescriptors() convenience function.

Clarified the return value of MemoryDescType() function.

— Fixed faulty specification of Wailimeout() and ReplyWaiTimeout().

Added a newh-flag tocontrol parameter in the FCHANGEREGISTERSSystem-call. Thé-flag controls whether the
resume/halt flag should be ignored or not.

Changed parameter type of TimePeriod() from “int” to “Word64".

Fixed typo in specification of the MsgTag input/outpatiparameter.

— Added comment toAC system-call about the read-once semantics of message registers.

— Added member name “raw” to all L4 types declared as structs.

— Renamed start() and stop() functions to Start() and Stop().

— Describe semantics of undefined UTCB memory regions.

— The first 10 message registers on PowerPC are now defined as backed by physical registers.
— The first 9 message registers on Alpha are now defined as backed by physical registers.

— Fixed MRy register allocation for IA32 syscalls and adapted syscalls accordingly.

Revision 4
— Added appendix for AMD64.

— Changed MIPS64Hc ABI to include 9 message registers.

— Added SrsTEMCLOCK syscall for MIPS64.

— Clarified the fact that an interrupt thread may be the originator thread during IPC propagation.
— Added appendix for SPARC v9.

— Thehighfield of memory descriptors now specify the last addressable byte in the memory region.

ABOUT THIS MANUAL Xiii

Revision 5

The ErrorCode TCR is now a generic placeholder for error descriptions of failed system-calls.
MEMORYCONTROL now returns a result parameter.

Defined error codes for various system-calls (HANGEREGISTERS THREADCONTROL, SCHEDULE SPACECON-
TROL, PROCESSORCONTROL and MEMORYCONTROL).

Defined convenience definitons for error code values.

Changed the 1A32 8sTEMCLOCK ABI to clobber the EDI register.

Specify that the KIP area and the UTCB area of an address space must not overlap.

For the PowerPC system call trap exception IPC, use a message label of -5, and preserve register LR.
The EXCHANGEREGISTERSSystem-call can no longer activate an inactive thread.

The Fpage argument to SRights() is now passed by reference.

Fixed inconsistencies about the number of available buffer registers.

Renamed Void to void, Char to char, and bool to Bool.

The Start() convenience function now aborts any ongoing IPC operations.

The Unmap() and Flush() convenience functions operating on a single fpage now deliver the status bits of the modified
fpage.

MIPS64 now uses the kO ($26) register for holding the UTCB address.
Added two new memory types for BMMORYCONTROL on MIPS64.
Added appendix for generic BootInfo.

Make it clear that it is not possible to activate a thread in an address space which has not been properly configured
with SPACECONTROL

Added appendix for ARM.
If using a 64 bit kernel, define second 32 bit word of kernel interface page to 0.

Changed the ABI for the PowerPC system calléMmir and MEMORYCONTROL .

Xiv ABOUT THIS MANUAL

Chapter 1

Basic Kernel Interface

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [pata structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.

The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-
space creation. It inot mapped by a pager, carot be mapped or granted to another address space andotée
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through th&eRNELINTERFACE System call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate Kernelld KernDescPtr
~ ~ InternalFreq ExternalFreq ProcDescPtr
MemoryDesc MembDescPtr

~ SCHEDULE SC THREADSWITCH SC SysTEMCLOCK SC +F0/+1EQ0
EXCHANGEREGISTERSSC UNMAP SC LipcSC IPcSC +E0/+1CO
MEMORYCONTROL pSC | PROCESSORCONTROL pSC| THREADCONTROL pSC SPACECONTROL pSC +D0/+1A0
Processorinfo Pagelnfo Threadinfo Clockinfo +C0/+180
ProcDescPtr BootInfo ~ +B0 /+160
KipArealnfo Utcblinfo ~ +A0/+140

~ +90/+120

~ +80/+100

~ +70/ +EO

~ +60/ +CO

~ Memorylnfo ~ +50/ +A0

~ +40/ +80

~ +30/ +60

~ +20/ +40

~ +10/ +20

KernDescPtr APIFlags API Version Ow/32) [K 2394 |’ +0

+C/+18 +8/+10 +4 [+8 +0

KERNEL INTERFACE PAGE 3

Note that this kernel interface page is basically upward compatible tkeime! info pageof versions 2 and X.0. The
magic byte string “L4K” at the beginning of the object identifies the kernel interface page.

Version/id number conventionVersion/subversion/subsubversion numbers and id/subid humbers with the most signif-
icant bit O denote official versions/ids and are globally unique through all suppliers. Version/id numbers that have the
most significant bit set to 1 denote experimental versions/ids and may be unique only in the context of a supplier.

API Description

APl Version

APIFlags

€ee

versiong) subversions, ~ (16)
version subversior
0x02 Version 2
0x83 0x80 Experimental Version X.0
0x83 0x81 Experimental Version X.1
0x84 rev Experimental Version X.2 (Revisiaev)
0x04 rev Version 4 (Revisiomev)
" (28/60) ww| ee

=00 : little endian,
=01 : big endian.

=00 : 32-hit API,
=01 : 64-bit APL.

Note that this field can not be used directly to differentiate between little endian and big endian
mode since thee field resides in different bytes for both modes. Furthermore, the offset address
of the API Flags is different for 32-bit and 64-bit modes. In summary, a direct inspection of the
kernel interface page is not sufficient to securely differentiate between 32/64-bit modes and
little/big endian modes.

Secure mode detection is enabled through tE® KELINTERFACE System call (see page 7). It
delivers the API Flags in a register.

System Description

Processorinfo

S (4) ~ (12/44) processors — 1 (1)

The size of the area occupied by a single processor descriptin isocation of description
fields for the first processor is denoted ByocDescPtr Description fields for subsequent pro-
cessors are located directly following the previous one.

processors

Pagelnfo

Number of available system processors.

page-size masky /54) ~(7) rwzx

page-size mask

rTrwax

If bit &£ — 10 of the page-size mask field (ditof the entire word) is set to 1 hardware and kernel
support pages of siz&. If the bit is 0 hardware and/or kernel do not support pages ofXize
Note that fpages of siz2" canbe used, even i* is no supported hardware page size. Infor-
mation about supported hardware page sizes is only a performance hint.

Identifies the supported access rightedd, write, ececute) that can be set independently of
other access rights. A 1-bit signals that the right can be set and reset on a mapped page. For
rwz = 010, only write permission could be controlled orthogonally. The processor would
implicitly permit read and execute access on any mapped pageukos= 111, all three rights

could be set and reset independently.

KERNEL INTERFACE PAGE

ThreadInfo
UserBase (12) SystemBase (12) t(g)
¢ Number of valid thread-number bits. The thread number field may be larger but only bits
0...t — 1 are significant for this kernel. Higher bits must all be 0.
UserBase
Lowest thread number available for user threads (see page 14). The first three thread numbers
will be used for the initial thread afy, o1, and root task respectively (see page 84). The version
numbers (see page 14) for these initial threads will equal to one.
SystemBase
Lowest thread number used for system threads (see page 14). Thread numbers below this value
denote hardware interrupts.
Clockinfo

SchedulePrecisiop g ReadPrecision;)

ReadPrecision
Specifies the minimal time differencg 0 that can be detected by reading the system clock
through the 8STEMCLOCK system call. Basically, this is the precision of the system clock
when reading it.

SchedulePrecision
Specifies the maximal jittet) for a scheduled thread activation based on a wakeup time (pro-
vided that no thread of higher or equal priority is active and timer interrupts are enabled).
Precisions are given as time periods (see page 28).

Utcbinfo
~ (10/42) S (6) a (6) m (10)
s The minimalarea sizefor an address space’s UTCB areais The size of the UTCB area limits
the total number of threadsto 2°mk < 2°.

m UTCB size multiplier.

a The UTCB location must be aligned 25. The total size required for one UTCB2§m.
KipArealnfo

™~ (26/58) S (6)

s The size of the kernel interface page are2’is

BootInfo Prior to kernel initialization a boot loader can write an arbitrary value into the BootInfo field of

the kernel configuration page (see page 84). Post-initialization code, e.g., a root server can later
read the field from the kernel interface page. Its value is neither changed nor interpreted by the
kernel. This is a generic method for passing system information across kernel initialization.

Processor Description

ProcDescPtr Points to an array containing a description for each system processoPratessorinfdield
contains the dimension of the arragrocDescPtris given as an address relative to the kernel
interface page’s base address.

ExternalFreq External Bus frequency in kHz.

InternalFreq Internal processor frequency in kHz.

Kernel Description

KERNEL INTERFACE PAGE 5

KernDescPtr Points to a region that contains 4 kernel-version words (see below) followed by a number of
O-terminated plaintext strings. The first plaintext string identifies the current kernel followed by
further optional kernel-specific versioning information. The remaining plaintext strings identify
architecture dependent kernel features (see Appendix A.3). A zero length string (i.e., a string
containing only a O-character) terminates the list of feature descriptions.

KernelDescPtr is given as an address relative to the kernel interface page’s base address.

Kernelld

id (8) SUbid(g) ~ (16)

Can be used to identify the microkernel.

id subid | kernel supplier

0 1 L4/486 GMD

0 2 L4/Pentium IBM

0 3 L4/x86 UKa

1 1 L4/Mips UNSW

2 1 L4/Alpha TUD, UNSW
3 1 Fiasco TUD

4 1 L4Ka::Hazelnut UKa

4 2 L4Ka::Pistachio | UKa

4 3 L4Ka::Strawberry| UKa

KernelGenDate

~ (16/48) year-20007) month 4| day s

Kernel generation date.

KernelVer Ver (g) subver(g) subsubvey;)
Can be used to identify the microkernel version. Note that this kernel version is not necessarily
related to the API version.
Supplier The four least significant bytes of tlseipplierfield specify a character string identifying the
kernel supplier:
“‘GMD." GMD
“IBM _” IBM Research
“UNSW” University of New South Wales, Sydney
“TUD." Technische Universitt Dresden
“UKa.” Universitat Karlsruhe (TH)

System-Call Links

SC Link for normal system call.
pSc Link for privileged system call, i.e., a system call that can only be performed by a privileged
thread.

The system-call links specify how the application can invoke system-calls for the current micro-
kernel. The interpretation of the system-call links is ABI specific, but will typically be addresses
relative to the kernel interface page’s base address where kernel provided system-call stubs are
located.

Memory Description

Memorylnfo

MemDescPty6,32) (16/32)

KERNEL INTERFACE PAGE

MemDescPtr

Location of first memory descriptor (as an offset relative to the kernel-interface page’s base
address). Subsequent memory descriptors are located directly following the first one. For mem-
ory descriptors that specify overlapping memory regions, later descriptors take precedence over
earlier ones.

n Number of memory descriptors.
MemoryDesc]
high/2'0 (5354 ~ (10) +4/+8
low/?w (22/54) v~ T (4) type (4) +0
high Address of last byte in memory region. The ten least significant address bits are all hardwired
to 1.
low Address of first byte in memory region. The ten least significant address bits are all hardwired
to 0.
v Indicates whether memory descriptor refers to physical memory: (0) or virtual memory
(v =1).
type Identifies the type of the memory descriptor.
Type | Description
0x0 | Undefined
0x1 | Conventional memory
0x2 | Reserved memory (i.e., reserved by kernel)
0x3 | Dedicated memory (i.e., memory not available to user)
0x4 | Shared memory (i.e., available to all users)
OxE | Defined by boot loader
OxF | Architecture dependent
t, type = OxE
The type of the memory descriptor is dependent on the bootloadet. figthe specifies the exact
semantics. Refer to boot loader specification for more info.
t, type = OxF’

The type of the memory descriptor is architecture dependent. ¢ Tiedd specifies the exact
semantics. Refer to architecture specific part for more info (see page 115).

t, type # OXE, type # OXF

The type of the memory descriptor is solely defined bytthe field. The content of thefield
is undefined.

KERNELINTERFACE 7

1.2 KERNELINTERFACE [Slow Systemcall]

— void* kernel interface page
Word API Version
Word API Flags
Word Kernelld

Delivers base address of tkernel interface page, APl versioand API flags. The latter two values are copies of the
corresponding fields in the kernel interface page. The APl information is delivered in registers through this system call (a)
to enable unrestricted structural changes of the kernel interface page in future versions, and (b) to enable secure detection
of the kernel’s endian mode (little/big) and word width (32/64).

The structure of thdernel interface pagés described on page 2. The page is a microkernel object. It is directly
mapped through the microkernel into each address space upon address-space creationmbpped by a pager, can
not be mapped or granted to another address space amibthe unmapped. The creator of a new address space can
specify the address where the kernel interface page has to be mapped. This address will remain constant through the
lifetime of that address space.

Any thread can determine the address of the kernel interface page through this system call. Since the system call may
be slow it is highly recommended to store the address in a static variable for further use.

It is also possible to use a unique address for the kernel interface page in all address spaces of a (sub)system. Then,
the kernel interface page can be accessed by fixed absolute addresses without using the current system call.

Besides other things, the page describes the current API, ABI, and microkernel version so that a server or an application
can find out whether and how it can run on the current microkernel. Since the kernel interface page also contains API-
and ABI-specific data for most other system calls the page’s base address is typically required before any other system
call can be used.

To enable version detection independently of the API and ABI, the current system call is guaranteed to work in all L4
versions. The systemcall code will never change and will be the same on compatible processors. (If a processor is upward
compatible to multiple incompatible processors the kernel should offer multiple systemcall codes for this function.)

Output Parameters

kernel interface page

Ver X.1 and above

base addresgs /64)

Kernel interface page address, always page aligned. 0 is no valid address.

Ver X.0 and belo

0 (32/64)

Older versions (2, X.0, etc.) do not include the kernel interface page as a kernel mapped page.
No address is delivered.

APl Version

versiong) subversionsg, ~ (16)

see page 3, “Kernel Interface Page”

APIFlags

~ (28/60) ww| ee

see page 3, “Kernel Interface Page”

8 KERNELINTERFACE

Kernelld

id (8) SUbid(g) ~ (16)

see page 5, “Kernel Interface Page”

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/kip.h>

void * Kernellnterface (Word& ApiVersion, ApiFlags, Kernel)d

Convenience Programming Interface

Derived Functions:

#include <l4/kip.h>

struct MEMORYDESC { Word raw [2] }

struct PRocDEsc { Word raw[4] }

void* Kernellnterface () [GetKernellnterfack
Delivers a pointer to the kernel interface page.

Word ApiVersion ()

Word ApiFlags ()

Word Kernelld ()

void KernelGenDate (void* Kernellnterface, Word& year, month, day

Word KernelVersion (void* Kernellnterfacg

Word KernelSupplier (void* Kernellnterfacg
Delivers the API Version/API Flags/Kernel Id/kernel generation date/kernel version/kernel sup-
plier.

Word NumProcessors (void* Kernellnterfacg

Word NumMemoryDescriptors (void* Kernellnterfacg
Delivers number of processors in the system/number of memory descriptors in the kernel-
interface page.

Word PageSizeMask (void* Kernellnterfacég

Word PageRights (void* Kernellnterfacg
Delivers supported page sizes/page rights for the current kernel/hardware architecture.

Word ThreadldBits (void* Kernellnterfacg
Word ThreadldSystemBase(void* Kernellnterfacg

KERNELINTERFACE 9

Word ThreadldUserBase (void* Kernellnterfacg

Delivers number of valid bits for thread numbers/lowest thread number for system threads/lowest
thread number for user threads.

Word ReadPrecision (void* Kernellnterfacg

Word SchedulePrecision (void* Kernellnterfacg
Delivers the SSTEMCLOCK read precision/maximal jitter for wakeups (bothig).

Word UtcbAreaSizelLog2 (void* Kernellnterfacg
Word UtcbAlignmentLog2 (void* Kernellnterface

Word UtcbSize (void* Kernellnterfacg

Delivers required minimum size of UTCB area/alignment requirement for UTCBs/size of a sin-
gle UTCB.

Word KipAreaSizelLog?2 (void* Kernellnterface
Delivers size of kernel interface page area.

Word Bootinfo (void* Kernellnterfacg
Delivers the contents of the boot info field.

char* KernelVersionString (void* Kernellnterfacé
Delivers the kernel version string.

char* Feature (void* Kernellnterface, Word nujn
Delivers thenumth kernel feature string, or a null pointerifim exceeds the number of avail-
able feature strings.

MemoryDesc*MemoryDesc (void* Kernellnterface, Word num

Delivers thenumth memory descriptor, or a null pointerifum exceeds the number of available
descriptors.

ProcDesc* ProcDesc (void* Kernellnterface, Word nujn

Delivers thenumth processor descriptor, or a null pointemifim exceeds the number of pro-
cessors of the system (see ProcessorInfo).

Support Functions:

#include <l4/kip.h>

Word UndefinedMemoryType

Word ConventionalMemoryType

Word ReservedMemoryType

Word DedicatedMemoryType

Word SharedMemoryType

Word BootLoaderSpecificMemoryType
Word ArchitectureSpecificMemoryType

Bool IsVirtual (MemoryDesc& m [IsMemoryDescVirtudl
Delivers true if memory descriptor specifies a virtual memory region.

Word Type (MemoryDesc& m [MemoryDescTygde
Word Low (MemoryDesc& m [MemoryDescLoy
Word High (MemoryDesc& h [MemoryDescHigh

Delivers type (x16+ typé), low limit, and high limit of memory region.

10

Word ExternalFreq (ProcDesc& p

Word InternalFreq (ProcDesc& p)
Delivers external frequency/internal frequency of processor.

KERNELINTERFACE

[ProcDescExternalFreg

[ProcDesclinternalFrel

VIRTUAL REGISTERS 11

1.3 Virtual Registers [Virtual Registers]

Virtual registers are implemented by the microkernel. They offer a fast interface to exchange data between the microkernel
and user threads. Virtual registers aggistersin the sense that they are static per-thread objects. Dependent on the
specific processor type, they can be mapped to hardware registers or to memory locations. Mixtures, some virtual registers
to hardware registers, some to memory are also possible. The ABI for virtual-register access depends on the specific
processor type and on the virtual-register type, see Appendices A.1, B.1 and C.1 for specific hardware details.

There are three classes of virtual registers:

e Thread Control Registers (TCRsge page 16
e Message Registers (MRsge page 46
e Buffer Registers (BRs3ee page 57

Loading illegal values into virtual registers, overwriting read-only virtual registers, or accessing virtual registers of other
threads in the same address space (which may be physically possible if some are mapped to memory locations) is illegal
and can have undefined effects on all threads of the current address space. However, since virtual registéers can

be accessed across address spaces, they are safe from the kernel’s point of view: lllegal accesses can like any other
programming bug only compromise the originator’s address space.

In general, virtual registers can only be addressed directly, not indirectly through pointers.
The generic API therefore offers no operations for indirect virtual-register access. However,
processor-specific code generators might use indirect access techniques if the ABI permits it.

Remark:

Generic Programming Interface

#include <l4/message.h>

void StoreMR (int 7, Word& w)

void LoadMR (int 4, Wordw)
Delivers/sets MR.

void StoreMRs (int ¢, k, Word& [k] w)

void LoadMRs (int 4, k, Word& [k] w)
Stores/loads MR . ;4 —1 to/from memory.

void StoreBR (int ¢, Word& w)

void LoadBR (int 4, Wordw)
Delivers/sets the value of BR

void StoreBRs (int i, k, Word& [k])

void LoadBRs (int 4, k, Word& [k])
Stores/loads BR. ;4+x—1 to/from memory.

12

VIRTUAL REGISTERS

Chapter 2

Threads

14 THREADID

2.1 Threadld [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID cagidbal or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.

Note that any thread has a glofaaida local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID

A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.

User-thread numbers can be freely allocated within the intgbisérBase 2*), wheret denotes the upper limit of
thread IDs. The thread-number intery@)stemBasdJserBasg is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interJl, SystemBasge The valuesSystemBaséJserBaseandt are published in the
kernel interface page (see page 4).

global thread ID]
thread nq5/32) Version 433y #0 (mod 64)

global interrupt ID

intrno (15/32) 1(14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be Oixod 64 #0 must hold for every version. For
hardware interrupts, the version field is always 1.

The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-
mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID

Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID

local id/64 (6 /55) 000000

Special Thread IDs

Special IDs exist fonilthreadand two wild cards. The thread l&nythreadmatches with any given thread ID, including
all interrupt IDs. The IDanylocalthreadnatches all threads that reside in the same address space.

nilthread 0
(32/64)
anythread
—1 (32/64)
anylocalthread
—1 (26/58) 000000

THREADID 15

Generic Programming Interface

#include <l4/thread.h>

struct THREADID { Word raw }

Threadld nilthread
Threadld anythread
Threadld anylocalthread

Threadld Globalld (Word threadno, versign
Delivers a thread ID with indicated thread and version number.

Word Version (Threadld}

Word ThreadNo (Threadld }
Delivers version/thread number of indicated global thread ID.

Convenience Programming Interface

#include <l4/thread.h>

Bool == (Threadld|, 1 [IsThreadEqudl

Bool != (Threadld |, 7 [IsThreadNotEquéal
Check if thread IDs match or differ. The result of comparing a local ID with a global 1D will
always indicate a mismatch, even if the IDs refer to the same thread.

Bool SameThreads (Threadld |, 1)
{ Globalld (I) == Globalld ()}

Check if thread IDs refer to the same thread. Also works if one ID is local and the other is
global.

Bool IsNilThread (Threadld }
{ t==nilthread }

Bool IsLocalld (Threadld }

Bool IsGloballd (Threadld}
Check if thread ID is a local/global one.

Threadld Localld (Threadld } [LocalldOf

Threadld Globalld (Threadld } [GloballdOf
Delivers the local/global ID of the specified local thread. Specifying a non-local thread delivers
nilthread (see XCHANGEREGISTERS page 18).

Threadld MyLocalld ()

Threadld MyGloballd ()
Delivers the local/global ID of the currently running thread (see TCRs, page 16).

Threadld Myself ()
{ MyGloballd () }

16 THREAD CONTROL REGISTERS (TCRS)

2.2 Thread Control Registers (TCRS) [Virtual Registers]

TCRs are a fast mechanism to exchange relatively static control information between user thread and microkernel. TCRs
are static non-transient per-thread registers.

VirtualSender/ActualSendess /64 R/W seelPC
IntendedReceivefss /64) R-only seelPC
XferTimeoutssz /64) R/W seelPC
ErrorCode(sz /64) R-only see system-calls
Preempt Flagsgs, R/W seeScheduling
Cop Flagss) W-only seeMiscellaneous
ExceptionHandlefss /64) R/W seeMiscellaneous
Pagersz/64) R/W seeProtocols
UserDefinedHandlg;s /64y R/W seeThreads
ProcessorNQss /g4) R-only seeMiscellaneous
MyLocalld (35 /64) R-only seeThreads, IPC
MyGloballd (35 /64 R-only seeThreads, IPC
MyGloballd Global ID of the thread.
MyLocalld Local ID of the thread.
ProcessorNo The processor number on which the thread currently executes.

UserDefinedHandle

This field can be freely set and read by user threads. It can, e.g., be used for storing a thread
number, a pointer to an additional user thread control block, etc.

THREAD CONTROL REGISTERS (TCRS) 17

Generic Programming Interface

The listed generic functions permit user code to access TCRs independently of the processor-specific TCR model. All
functions are user-level functions; the microkernel is not involved.

#include <l4/thread.h>

Threadld MyLocalld ()

Threadld MyGloballd ()
Delivers the local/global ID of the currently running thread (see TCRs, page 16).

Threadld Myself ()
{ MyGiloballd () }

int ProcessorNo ()
Delivers the processor number the current thread is running on. Delivered value is a valid index
into the processor description array (see Kernel Interface Page, page 4).

Word UserDefinedHandle ()

void SetUserDefinedHandle (Word NewValug
Delivers/sets the user defined handle of the currently running thread.

Threadld Pager ()

void SetPager (Threadld NewPaggr
Delivers/sets the pager for the currently running thread.

Threadld ExceptionHandler ()

void SetExceptionHandler (Threadld NewHandlgr
Delivers/sets the exception handler for the currently running thread.

void SetCopFlag (Word n

void Clr_CopFlag (Word
Sets/clears coprocessor flag

Word ErrorCode ()
Delivers the error code of the last system-call.

Word XferTimeouts ()

void SetXferTimeouts (Word NewValug
Delivers/sets the transfer timeouts for the currently running thread gsepdge 61).

Threadld IntendedReceiver ()
Delivers the intended receiver of last received IPC (sepfdage 62).

Threadld ActualSender ()
Delivers the actual sender of the last propagated IPC (sg@age 61).

void SetVirtualSender (Threadid}
Sets the virtual sender for the next deceiving IPC (seefage 61).

Code generators of IDL and other compilers are not restricted to the generic interface. They can use any processor-specific
methods and optimizations to access TCRs.

18 EXCHANGEREGISTERS

2.3 EXCHANGEREGISTERS [Systemcall]

Threadld dest E— Threadld result

Word control Word control

Word SP Word SP

Word IP Word IP

Word FLAGS Word FLAGS

Threadld pager Threadld pager

Word UserDefinedHandle Word UserDefinedHandle

Exchanges or reads a threafsAGS, SPandIP hardware registers as well aagerand UserDefinedHandl§ CRs.
Furthermore, thread execution can be suspended or resumed. The destination thread nacsiMstrarad (see page 22)
residing in the invoker’s address space.

Any IP, SP,or FLAGSmaodification changes the correspondirggr-leveregisters of the addressed thread. In general,
ongoing kernel activities are not influenced. However, a currently active IPC operation can be canceled or aborted. For
details see thé& R-bit specification below.

Modifications of thepagerTCR and thdJserDefinedHandl& CR become immediately effective, whether the desti-
nation thread executes in user mode or in kernel mode.

Input Parameters

dest Thread ID of the addressed thread. This may be a local or a global ID. However, the addressed
thread must reside in the current address space. Using a local thread ID might be substantially
faster in some implementations.

ContrOI 0(23/55) hpufszRH

hpufis The s-flag refers to th&SPregister, to IP, f to FLAGS u to theUserDefinedHandl@CR, p to
thepagerTCR, andh to the H-flag. If a flag is set to 1, the register/state is overwritten by the
corresponding input parameter. Otherwise, the corresponding input parameter is ignored and the
register/state is not modified.

SR Controls whether the addressed thread’s ongoing IPC opereration should be canceled/aborted
through the system call or not.

S=0 An IPC operation of the addressed thread that is currently waiting to send a message or is sending
a message will continue as usu&@P, IPor FLAGS modifications are delayed until the IPC
operation terminates.

S=1 An IPC operation of the addressed thread that is currently waiting to send a message will be
canceled An IPC operation that is currently sending a message widlthmted.

R=0 An IPC operation of the addressed thread that is currently waiting to receive a message or is
receiving a message will continue as us&t, IPor FLAGSmodifications are delayed until the
IPC operation terminates.

R=1 An IPC operation of the addressed thread that is currently waiting to receive a message will be
canceled An IPC operation that is currently receiving a message wikiberted.

H Halts/resumes the thread/if= 1. Ignored forh = 0.

H=0 No effect if the thread was not halted. Otherwise, thread execution is resumed.

EXCHANGEREGISTERS 19

H=1 User-level thread execution is halted. Note that ongoing IPCs and other kernel operations are
not affected byH. (SeeSR for also aborting active IPC.)

SP The current user-level stack pointer is seSif s = 1. Ignored fors = 0.
IP The current user-level instruction pointer is setRdf : = 1. Ignored fori = 0.
FLAGS Sets the user-level processor flags of the thregdHf 1. Ignored forf = 0. The semantics of

the FLAGSword depends on the processor type.

UserDefinedHandle
Sets the thread¥serDefinedHandl& CR if «w = 1. Ignored foru = 0.

pager Sets the threadagerTCR if p = 1. Ignored forp = 0.

Output Parameters

result # nilthread, input parametedestwas a local thread ID
globalthread ID of the addressed threack BHANGEREGISTERSsucceeded.

result # nilthread, input parametedestwas a global thread ID
local thread ID of the addressed threadk dHANGEREGISTERSsucceeded.

result =nilthread Operation failed. The ErrorCode TCR indicates the reason for the failure.

ErrorCode [TCR] Set ifresult= nilthread Undefined ifresult nilthread

-9 Invalid thread. Thelestparameter specified an invalid thread ID, an inactive thread, or a thread
within a different address space.

control
0 (29/61) SRH|
H Reports whether the addressed thread was halfee-(1) or not (H = 0) when EXCHANGE-
REGISTERSwas invoked. Note that this outpoontrol bit is independent of the input parameter
control.
SR Reports whether the addressed thread was within an IPC operation wWemEGEREGIS-

TERSwas invoked. A value of O reports that the addressed thread was not within a send phase
(S = 0) or not within a receive phaséi(= 0), respectively. Note that these outpaintrol bits
are independent of the input parametentrol.

R=1 Operation was executed while the addressed thread was within the receive phase of an IPC
operation. Iff the input control word hall = 1 the IPC operation was canceled or aborted.

S=1 Operation was executed while the addressed thread was within the send phase of an IPC opera-
tion. Iff the input control word had' = 1 the IPC operation was canceled or aborted.

20 EXCHANGEREGISTERS

SP Old user-level stack pointer of the thread.
IP Old user-level instruction pointer of the thread.
FLAGS Old user-level flags of the thread. The semantics of this word is processor specific.

UserDefinedHandle
Old content of thread'8)serDefinedHandl@ CR.

pager Old content of thread’pagerTCR.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/thread.h>

Threadld ExchangeRegisters (Threadld dest, Word control, sp, ip, flags, UserDefinedHandle, Threadld pager,

Word& old_control, old sp, oldip, old_flags, oldUserDefinedHandle, Threadld& alpgage)

Convenience Programming Interface

Derived Functions:

#include <l4/thread.h>

Threadld Globalld (Threadld } [GloballdOf
{ if (IsLocalld (t)) ExchangeRegisters (t,0,—...) else t

Delivers global ID of specified local thread. Specifying a non-local thread delignsead

Threadld Localld (Threadld} [LocalldOf
{ if (IsGloballd (t)) ExchangeRegisters (,0,—...) elge t

Delivers local ID of specified local thread. Specifying a non-local thread delinikthsead

Word UserDefinedHandle (Threadld } [UserDefinedHandleQf
void SetUserDefinedHandle (Threadld t, Word hand)e [SetUserDefinedHandleQf

Delivers/sets the user defined handle of specified local thread. Result of specifying a non-local

thread is undefined.

Threadld Pager (Threadld} [PagerOf
void SetPager (Threadldt, p [SetPagerOf

Delivers/sets the pager for specified local thread. Result of specifying a non-local thread is

undefined.

EXCHANGEREGISTERS 21

void Start (Threadld}
void Start (Threadld t, Word sp, ip [StartSpld

void Start (Threadld t, Word sp, ip, flags [Start SplpFlag$
Resume execution of specified local thread (if halted). Abort any ongoing IPC operations. Op-
tionally modify stack pointer, instruction pointer, and processor flags according to function pa-
rameters. Result of specifying a non-local thread is undefined.

ThreadStateStop (Threadld }

ThreadStateStop (Threadld t, Word& sp, ip, flags [StopSplpFlag$
Halt execution of specified local thread and return its current thread state. Do not abort any on-
going IPC operation. Optionally return thread’s stack pointer, instruction pointer, and processor
flags in output parameters. Result of specifying a non-local thread is undefined.

ThreadStateAbortReceiveand.stop (Threadld)

ThreadStateAbortReceiveand.stop (Threadld t, Word& sp, ip, flags [AbortReceiveand stop SplpFlag$
As stop () except any ongoing IPC receive operation is immediately aborted.

ThreadStateAbortSendand.stop (Threadld }

ThreadStateAbortSendand.stop (Threadld t, Word& sp, ip, flags [AbortSendand stop SplpFlag$
As stop () except any ongoing IPC send operation is immediately aborted.

ThreadStateAbortlpc_and stop (Threadld)

ThreadStateAbortlpc_and_stop (Threadld t, Word& sp, ip, flags [Abortlpc.and.stop SplpFlag$
As stop () except any ongoing IPC send or receive operations are immediately aborted.

Support Functions:

#include <l4/thread.h>

struct THREADSTATE { Word raw }

Bool ThreadWasHalted (ThreadState)s
Bool ThreadWasSending(ThreadState)s
Bool ThreadWasReceiving(ThreadState)s

Bool ThreadWaslpcing (ThreadState)s
Query the thread state returned from one ofstue ()functions.

Word ErrorCode ()
Word ErrinvalidThread

22 THREADCONTROL

2.4 THREADCONTROL [Privileged Systemcall]

Threadld dest — Word result
Threadld SpaceSpecifier

Threadld scheduler

Threadld pager

void* UtcbLocation

A privileged thread, e.g., the root server, can delete and create threads through this function. It can also modify the global
thread ID (version field only) of an existing thread.

Threads can be created astive or inactivethreads. Inactive threads do not execute but can be activated by active
threads that execute in the same address space.

An actively created thread starts immediately by executing a short receive operation from its pager. (An active thread
must have a pager.) The actively started thread expects a start message (MsgTag and two untyped words) from its pager.
Once it receives the start message, it takes the value of BRits newP, the value of MR, as its newSP, and then
starts execution at user level with the receiledndSP.

Interrupt threads are treated as normal threads. They are active at system startuprastdeateleted or migrated
into a different address space (i.e., SpaceSpecifier must be equal to the interrupt thread ID). When an interrupt occurs the
interrupt thread sends an IPC to its pager and waits for an empty end-of-interrupt acknowledgment messagy. (MR
Interrupt threads never raise pagefaults. To deactivate interrupt message delivery the pager is set to the interrupt thread’s
own ID.

Input Parameters

dest Addressed threadMust be a global thread IDOnly the thread number is effectively used
to address the thread. If a thread with the specified thread number exists, its version bits are
overwritten by the version bits afest idand any ongoing IPC operations are aborted. Otherwise,
the specified version bits are used for thread creations, i.e., a thread creation generates a thread
with ID dest

SpaceSpecifief nilthread, dest not existing
Creation. The space specifier specifies in which address space the thread will reside. Since
address space do not have own IDs, a thread ID is us&paseSpecifierts meaning is: the
new thread should execute in the same address space as theSpaea$pecifier
The first thread in a new address space is created SptiteSpecifier dest This operation
implicitly creates a new empty address space. Note that the new address space is created with an
empty UTCB and KIP area. The space creatiansttherefore be completed by @&cECON-
TROL operation before the thread(s) can execute.

SpaceSpecifief nilthread, dest exists
Modification Only. The addressed threalkstis neither deleted nor created. Modifications can
change the version bits of the thread ID, the associated scheduler, the pager, or the associated
address space, i.e., migrate the thread to a new address space.

SpaceSpecifief nilthread, dest exists

Deletion. The addressed threaftkstis deleted. Deleting the last thread of an address space
implicitly also deletes the address space.

scheduler# nilthread
Defines the scheduler thread that is permitted to schedule the addressed thread. Note that the
scheduler thread must exist when the addressed thread starts executing.

THREADCONTROL

23

scheduler= nilthread

The current scheduler association is not modified . This variant is illegal for a creatRgAD-
CONTROL operation.

pager# nilthread

pager= nilthread

The pager oflestis set to the specified thread.déstwas inactive before, it iactivated.

The current pager association is not modified.
If used with a creating FREADCONTROL operationdestis created as aimactivethread.

UtcbLocation# -1

UtcbLocation= -1

The start address of the UTCB of the thread is set to UtcbLocation. Upon thread activation the
UTCB must fit entirely into the UTCB area of the configured address space, and must be prop-
erly aligned according to the Utcblinfo field of the kernel interface page. It is the application’s
responsibility to ensure that UTCBs of multiple threads do not overlap. Changing the UtcbLo-
cation of an already active thread is an illegal operation. Note that since a newly created space
has an empty UTCB area, it is not possible to activate a thread in an address space which has
not been properly configured withPBCECONTROL

The UTCB location is not modified.

Utcbinfo [KernelinterfacePage Field)]

Permits to calculate the appropriate page size of the UTCB area fpage and specifies the size and
alignement of UTCBs. Note that the size restricts the total number of threads that can reside in
an address space.

~ (10/42) S (6) a (6) m (10)

The minimalarea siz€or an address space’s UTCB are&is The size of the UTCB area limits
the total number of threadsto 2°mk < 2°.

m UTCB size multiplier.
a The UTCB location must be aligned 2. The total size required for one UTCB28m.
Output Parameters
result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR

indicates the failure reason.

ErrorCode [TCR]

Set ifresult= 0. Undefined ifresult0.

No privilege. Current thread does not have have privilege to perform the operation.

Unavailable thread. Thdestparameter specified a kernel thread or an unavailable interrupt

thread.

Invalid space. Thé&paceSpecifigparameter specified an invalid thread ID, or activation of a

thread in a not yet initialized space.

Invalid scheduler. Thechedulemparamter specified an invalid thread ID, or was satilitwrad

for a creating FREADCONTROL operation.

Invalid UTCB location. UtcbLocationlies outside of UTCB area, or attempt to change the
UtcbLocationfor an already active thread.

24 THREADCONTROL

=8 Out of memory. Kernel was not able to allocate the resources required to perform the operation.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/thread.h>

Word ThreadControl (Threadld dest, SpaceSpecifier, Scheduler, Pager, void* UtcbLogation

Convenience Programming Interface

Derived Functions:

#include <l4/thread.h>

Word Associatelnterrupt (Threadld InterruptThread, InterruptHandler
{ ThreadControl (InterruptThread, InterruptThread, nilthread, InterruptHandlek, -1)

Associate a handler thread with the specified interrupt source.

Word Deassociatelnterrupt (Threadld InterruptThread
{ ThreadControl (InterruptThread, InterruptThread, nilthread, InterruptThreay, -1)

Remove association between the specified interrupt source and any potential handler thread.

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege
Word ErrinvalidThread
Word ErrinvalidSpace
Word ErrinvalidScheduler
Word ErrUtcbArea

Word ErrNoMem

Chapter 3

Scheduling

26 CLOCK

3.1 Clock [Data Type]

On both 32-bit and 64-bit processors, the system clock is represented as a 64-bit unsigned counter. The clock measures
time in 1 s units, independent of the processor frequency. Although the clock base is undefined, it is guaranteed that the
counter will not overflow for at least 1,000 years.

Generic Programming Interface

#include <l4/schedule.h>

struct CLock { Word64 raw }

Convenience Programming Interface

#include <l4/schedule.h>

Clock + (Clock |, intr)

Clock + (Clock I, Word64 y [ClockAddUsek
Clock — (Clock |, intr)
Clock — (Clock I, Word64 y [ClockSubUsdc

Adds/subtracts a number @fs to/from a clock value. Delivers new clock value. Does not
modify the old clock value.

Bool < (Clock 1,) [IsClockEarlieq
Bool > (Clockl,r) [IsClockLatet
Bool <= (Clockl,r)
Bool >= (Clockl,r)
Bool == (Clock |, 1) [IsClockEqudl

Bool '= (Clockl,) [IsClockNotEqudl
Compares two clock values.

SYSTEMCLOCK

3.2 SYSTEMCLOCK [systemcall]

— Clock clock

Delivers the current system clock. Typically, the operation does not enter kernel mode.

27

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

Clock SystemClock ()

28 TIME

3.3 Time [Data Type]

Time values are used to specify send/receive timeouts for IPC operations (see page 60) and time quanta for scheduling
(see page 31). The unit for time periods as well as for time pointg:s Tlock ticks thus happen eveng.

Relativetime values specify a time period. Time periods are encoded as un-normalized 16-bit floating-point numbers.
(Note that for easier handling the mantissa can have leading 0-bits.) The shortest non-zero time period that can be
specified is 1us, the longest finite period slightly exceeds 610 hours. Two special periods frequently used for timeouts
are 0 andxo, a never ending period. The values 0 aachave special encodings.

time period: .
0 e (5) m (10) = 2°m ,LLS
0 (16) = &
0 1 (5) 0(10> =0

Absolutetime values specify a point in time. They are only valid for a limited period, at maximum 67 seconds.

time point:

=

€w |C ™ (10)

For a semantical description of time-point values, we @$eck to denote the current clock value jrs, z; to denote
bit i of z, andz|; ; to denote the number consisting of bit® j of . Then, the time-point valug:, m, e) specifies the
point:

2¢ . (m + Clock = 210) if Clock[=c

[63,e4+9 e+10]

2° - (m + Clock 2104219 i Clock,,,, # ¢

[63,e+9]
Absolute time values are thus the more precise the nearer in the future they are.

Absolute time values with maximal precision become invalid just after the clock has reached the specified point in
time. The validity interval can be expanded, but only by reducing the precision. In general, a time-poirftyaiye)
that is constructed when the current clock valu€iss valid fromCy up to

Co+ (2" —1)-2°
Therefore, a time-point value that should remain valid for 10 ms can have a precisionusf \iBereas a value that

should remain valid for an entire second can only have a precision of 1 ms. In general, a precisionaffthe #équired
validity intervalcan be achieved.

Generic Programming Interface

#include <l4/schedule.h>

struct TIME { Word16 raw }

Time Never

Time ZeroTime

Time TimePeriod (Word64 microsecondls

TIME 29

Time TimePoint (Clock a)

Convenience Programming Interface

#include <l4/schedule.h>

Time + (Time |, Word) [TimeAddUsec
Time += (Time |, Word) [TimeAddUsecTo
Time — (Time |, Word) [TimeSubUsdc
Time —= (Time I, Word § [TimeSubUsecFrom

Adds/subtracts a number of microseconds to/from a time value.

Time + (Timel, n) [TimeAdd

Time += (Timel,n) [TimeAddTd

Time — (Timel, D [TimeSub

Time —= (Timel, r) [TimeSubFrorh
Adds/subtracts a time period to/from a time value. The result of adding/subtracting a time point
is undefined.

Bool > (Timel,n [IsTimeLonger

Bool >= (Timel, 1)

Bool < (Timel,n [IsTimeShortdr

Bool <= (Timel, 1)

Bool == (Timel, 1) [IsTimeEqudl

Bool = (Timel, 1) [IsTimeNotEqudl

Compares two time values. The result of comparing a time period with a time point, or vice
versa, is undefined.

30 THREADSWITCH

3.4 THREADSWITCH [systemcall]

Threadld dest — void

The invoking thread releases the processor (non-preemptively) so that another ready thread can be processed.

Input Parameter

dest = nilthread Processing switches to an undefined ready thread which is selected by the scheduler. (It might
be the invoking thread.) Since this is “ordinary” scheduling, the thread gets a new timeslice.

If destis ready, processing switches to this thread. In this “extraordinary” scheduling, the invok-
ing thread donates its remaining timeslice to the destination thread. (This one gets the donation
in addition to its ordinarily scheduled timeslices, if any.)

If the destination thread is not ready or resides on a different processor, the system call operates
as described fodest= nilthread

dest # nilthread

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

void ThreadSwitch (Threadld degt

Convenience Programming Interface

Derived Functions:

#include <l4/schedule.h>

void Yield ()
{ ThreadSwitch (nilthread)

Switch processing to a thread selected by the scheduler.

SCHEDULE

3.5 SCHEDULE [systemcall]

The system call can be used by schedulers to definribaty, timeslice lengthand other scheduling parameters of

Threadld dest — Word
Word time control Word
Word processor control

Word prio

Word preemption control

threads. Furthermore, it delivers thread states.

The system call is only effective if the calling thread is defined as the destination thread’s schedulee{deentrol,

page 22).

Input Parameters

dest Destination thread ID. The destination thread must be existent (but can be inactive) and the cur-
rent thread must be defined as the destination thread’s scheduldifse@eontrol). Otherwise,
the destination thread is not affected.

All further input parameters have no effect if the supplied value is ensuring that the corresponding internal thread

variable isnotmodified. The following description always refers to valees- 1.

time control

ts Ien(16)

total quantumy)

ts len New timeslice length for the destination thread. The timeslice length is specified as a time
period (see page 28). Absolute time values and the value 0 are illegal. A timeslice length of
oo, however, can be specified. In that case, the thread never experiences a preemption due to
exhausted time slice. The specified value is always rounded up to the nearest possible timeslice
length. In particular, a time period ofds results in the shortest possible timeslice.
Writing the timeslice length initializes the current quantum with the new length. After the quan-
tum is exhausted, the thread is preempted while the quantum is reloaded ieitifior the next

timeslice.

total quantum Defines the total quantum for the thread. Exhaustion of the total quantum results in an RPC to
the thread’s scheduler (i.e., the current thread). (Re)writing the total quantum re-initializes the
quantum, independent of the already consumed total quantum. The total quantum is specified
as a time period (see page 28). Absolute time values are illegal. A total quantsrcah be

specified.

prio

0 (24/56)

prio (g)

New priority for destination thread. Must be less than or equal to current thread’s priority.

preemption contraf
0 (8/40)

sensitive prigg)

maximum delay)

sensitive prio Preemptions by threads that run on a priority lower or equal toshisitive priowill, (a) if
thedelay-preemptiofilag is set, be delayed until the thread executdsead switch (nilthread)
system call; and (b) if theignal-preemptiofilag is set, raise a preemption fault to the exception

handler.

No preemption delays or signaling will occur if preempted by a thread having a higher priority
thansensitive prigregardless of the state of thelay-preemptiomndsignal-preemptiorflags.

32 SCHEDULE

maximum delay The maximum time inus a pending preemption can be delayed in the destination thread. The
value 0 effectively disables preemption delay.

processor control

0 (16/48) processor numbgy g

processor numberSpecifies the processor number to which the thread should be migrated. The processor number
must be valid, i.e., smaller than the total number of processors (see kernel interface page at
page 3). Otherwise, the parameter is ignored. The first processor number is denoted as 0.

Output Parameters

result ~ (21/56) tstate (s)
tstate = Thread state:
0 Error. The operation failed completely. The ErrorCode TCR indicates the reason for the failure.
1 Dead.The thread is unable to execute or does not exist.
2 Inactive. The thread is inactive/stopped.
3 Running.The thread is ready to execute at user-level.
4 Pendingsend. A user-invoked IPC send operation currently waits for the destination (recipient)

to become ready to receive.

5 SendingA user-invoked IPC send operation currently transfers an outgoing message.

6 Waitingto receive. A user-invoked IPC receive operation currently waits for an incoming mes-
sage.

7 ReceivingA user-invoked IPC receive operation currently receives an incoming message.

ErrorCode [TCR] Set if lower 8 bits ofresult= 0. Undefined if lower 8 bits ofesultz0.

=1 No privilege. Current thread is not the scheduler of the destination thread.
=2 Thedestparameter specified an invalid thread ID.
-5 Invalid parameter. The specified time-slice length, total quantum, priority, or processor number
was invalid.
time control
remts g rem total ;)
remts Remainder of the current timeslice.

rem total Remaining total quantum of the thread.

SCHEDULE 33

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

Word Schedule (Threadld dest, Word TimeControl, ProcessorControl, prio, PreemptionControl, Word&
old_TimeContro)

Convenience Programming Interface

Derived Functions:

#include <l4/schedule.h>

Word SetPriority (Threadld dest, Word prio
{ Schedule (dest, -1, -1, prio, -})

Word SetProcessorNo (Threadld dest, Word ProcessorNo
{ Schedule (dest, -1, ProcessorNo, -1,}1)

Word Timeslice (Threadld dest, Time & ts, Time &)q
Delivers the remaining timeslice and total quantum of the given thread.

Word SetTimeslice (Threadld dest, Time ts, Time)tq
{ Schedule (dest, ts2'°® +tq, -1, -1, -1)}

Word SetPreemptionDelay (Threadld dest, Word sensitivePrio, Word maxDglay
{ Schedule (dest, -1, -1, -1, SensitivePria** + MaxDelay)}

Support Functions:

Word ErrorCode ()
Word ErrNoPrivilege
Word ErrinvalidThread
Word ErrinvalidParam

34

PREEMPT FLAGS

3.6 Preempt Flags [rcr]

The preemption flagef'CR controls asynchronous preemptions (timeslice exhausted or activation of a higher-priority
thread including device interrupts).

Preempt Flags

s=0
s=1
d=20
d=1
I1=0
I=1

The ds-flags are used to control the microkernel. User threads can set/reset theri-flage
signals an event to the user. It is set by the microkernel and typically read/reset by the user.

Asynchronous preemptions are not signaled to the exception handler.

Asynchronous preemptions are signaled as preemption faults to the exception hawdtei0 If
this happens immediately. Otherwise, it is delayed until the thread continues execution after the
preemption.

All asynchronous preemptions happen immediately. If they are signaled as preemption faults
(s = 1), this happenafter the preemption took place, i.e., when the thread gets reactivated.

Asynchronous preemptions are delayed if the priority of the preemptor is lower or equal than
the sensitive priorityfor the current thread. (The sensitive priority is set by the scheduler, see
page 31.) A delayed preemption does not interrupt the current thread immediately but is post-
poned until the current thread invokes a systembadiad switch (nilthread)However, a pend-

ing preemption must not be delayed for longer thanrtieximum delayhat was set by the
thread’s scheduler. Such a preemption-delay overflow resetg Hieand is signaled to the
exception handler.

No asynchronous preemption is pending.

An asynchronous preemption is currently pending, i.e., the thread should as soon as possible
reset thel-flag and invokehread switch Invokingthread switctre-enables thenaximum delay

for the next delayed asynchronous preemption.

Invoking thread switchis not required if no asynchronous preemption is pending- 0) after

the user thread has reset thélag.

Generic Programming Interface

#include <l4/schedule.h>

Bool EnablePreemptionFaultException()

Bool DisablePreemptionFaultException()

Sets/resets theflag and delivers the olg-flag value (true = set).

Bool DisablePreemption ()

Bool EnablePreemption ()

Sets/resets thé-flag and delivers the old-flag value (true = set).

Bool PreemptionPending ()

Resets thd-flag and delivers the old-flag value (true = set).

Chapter 4

Address Spaces and
Mapping

36 FPAGE

4.1 Fpag e [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpade of size
has &2°-aligned base addressi.e.,b =0 (mod 2°), wheres>10 for all architectures.

Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially
unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage(b, 2°)

b/2t0 (22/54) S(6) Orwaz

Special fpage denoters describe tloenpletauser address space and thipage an fpage which has no base address and
a size of 0:

complete
0(22/54) 821(6) Orwzx
nilpage
0 (32/64)
Access Rights
rw Therwz bits define the accessibility of the fpage:

r readable
w writable
T executable

A bit set to one permits the corresponding access to the newly-mapped/grantggt@aded

that the mapper itselbossesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access

right.

Note that processor architectures may impose restrictions on the access-right combinations.
However, read-only (including execute)rwz = 101, andread/write/executerwz = 111,

should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE { Word raw }

Word Readable
Word Writable

FPAGE 37

Word eXecutable
Word FullyAccessible
Word ReadeXecOnly
Word NoAccess

Fpage Nilpage
Fpage CompleteAddressSpace

Bool IsNilFpage (Fpagej
{ f==Nilpage}

Fpage Fpage (Word BaseAddress, int FpageSizelK)

Fpage FpagelLog2 (Word BaseAddress, int Log2FpageSizé4)
Delivers an fpage with the specified location and size.

Word Address (Fpage }
Word Size (Fpage §

Word SizelLog2 (Fpage §
Delivers address/size of specified fpage.

Word Rights (Fpagej

void SetRights (Fpage& f, Word AccessRights
Delivers/sets the access rights for the specified fpage.

Fpage + (Fpage f, Word AccessRights [FpageAddRighis
Fpage += (Fpage f, Word AccessRights [FpageAddRightsTo
Fpage — (Fpage f, Word AccessRights [FpageRemoveRights
Fpage —= (Fpage f, Word AccessRights [FpageRemoveRightsFrm

Adds/removes specified access rights from fpage. Delivers new fpage value.

38

4.2 UNMAP

UNMAP

[Systemcall]

Word control — void

The specified fpages (located in MR) are unmapped. Fpages are mapped as part of the IPC operation (see page 59).

Input Parameters

control

k
F=0
f=1

-

0 (25/57) k (6)

Specifies the highest MRthat holds an fpage to be unmapped. The number of fpages is thus
k+ 1.

The fpages are unmapped recursively in all address spaces in which threads of the current ad-
dress space have mapped them before. However, the fpages remain unchanged in the current
address space.

The fpages are unmapped like in tfie= 0 case and, in addition, also in the current address
space.

FpageListMRy_.

FpageMR;

Orwzx

=0111

=0010

=0000

Fpages to be processed.

fpage s, ss) Orwax

Fpage to be unmapped. (The teammappeds used even if effectively no access right is re-
moved.) A nilpage specifies a no-op.

Any access bit set to 1 revokes the corresponding access right. A 0-bit specifies that the corre-
sponding access right should not be affected. Typical examples:

Complete unmap of the fpage.

Partial unmap, revoke writability only. As a result, the fpage is set to read-only.

No unmap. This case is particularly useful if orirty andaccessedits should be read and
reset without changing the mapping.

Output Parameters

FpageListMRy.. .«

The accessed status bits in the fpages are updated.

UNMAP 39

FpageMR;

fpage<28/58) 0ORWX

The status bitReferencedWritten, andeXecutedf all pages processed by the unmap operation

are reset and the bitwise OR-ed old values of all the processed pages are delivereg in.MR

For processors that do not differentiate between read access and execute acdess)dte

bits are unified: either both are set or both are reset. Resetting status bits is not a recursive
operation. However, the status bit values for pages within the current space will also reflect
accesses performed on recursive mappings.

R=0 No part of the fpage has be&eferencedfter the last unmap operation (or after the initial map
operation). This includes all recursively mapped pages.
Remark:The meaning ofeferencedslightly differs fromread Not being referenced means that
not only no read access but that also no write and execute access occurred.

R=1 At least one page of the specified fpage (including all recursive mappings) has been referenced
after the last unmap operation (or after the initial map operation). All in-keRrtats are reset
Remark: The meaning ofeferencedslightly differs fromread Write accesses and execute
accesses also set thebit.

W =0 No part of the fpage has been written after the last unmap operation (or after the initial map
operation), i.e., the fpage tdean This includes all recursively mapped pages.

W=1 At least one page of the specified fpage (including all recursive mappings) has been written after
the last unmap operation (or after the initial map operation), i.e., the fpatiyis
All in-kernel dirty bits are reset.

X =0 No part of the fpage has beeiXecutedhfter the last unmap operation (or after the initial map
operation). This includes all recursively mapped pages.

X=1 At least one page of the specified fpage (including all recursive mappings) has been executed
after the last unmap operation (or after the initial map operation). All in-kexnbits are reset.
Remark:For processors that do not differentiate between read and execute accesaesgjtthe
issetto 1iffR = 1.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/space.h>

void Unmap (Word contro)

Convenience Programming Interface

Derived Functions:

#include <l4/space.h>

Fpage Unmap (Fpagej [UnmapFpagg
{ LoadMR (0, f); Unmap (0); StoreMR (O, f); f
void Unmap (Wordn, Fpage& [n] fpage$ [UnmapFpagées

{ LoadMRs (0,n, fpages); Unmapr{ — 1); StoreMRs (0, fpages);}

Recursively unmaps the specified fpage(s) from all address spaces except the current one.

40

UNMAP

Fpage Flush (Fpagej
{ LoadMR (0, f); Unmap (64); StoreMR (0, f);}f
void Flush (Wordn, Fpage& [n] fpage$ [FlushFpagep
{ LoadMRs (0,n, fpages); Unmaptd + n — 1); StoreMRs (Op, fpages);}
Recursively unmaps the specified fpage(s) from all address spaces, including the current one.

Fpage GetStatus (Fpage j
{ LoadMR (0, f— FullyAccessiblg Unmap (0); StoreMR (O, f); §

Resets and delivers the status bits of the specified fpage.

Bool WasReferenced(Fpage j
Bool WasWritten (Fpage §

Bool WaseXecuted (Fpage j
Checks the status bits of specified fpage. The specified fpage must be the outpunofiap ()
Flush (), or GetStatus (junction.

SPACECONTROL 41

4.3 SPACECONTROL [Privileged Systemcall]

Threadld SpaceSpecifier — Word result
Word control Word control
Fpage KernellnterfacePageArea

Fpage UtcbArea
Threadld Redirector

A privileged thread, e.g., the root server, can configure address spaces through this function.

Input Parameters

SpaceSpecifier Since address spaces do not have ids, a thread ID is uspaaeSpecifierlt specifies the
address space in which the thread resides. SpeceSpecifighread must exist although it may
be inactive or not yet started. In particular, the thread may reside in an empty address space that
is not yet completely created.

KernellnterfacePageArea

Specifies the fpage where the kernel should map the kernel interface page. The supplied fpage
must have a size specified in tikgArealnfofield of the kernel interface page, must fit entirely

into the user-accessible part of the address space and must not overlap with the UTCB area (see
below). Address 0 of the kernel interface page is mapped to the fpage’s base address.

The value is ignored if there is at least one active thread in the address space.

KipArealnfo [KernelinterfacePage Field]
Permits calculation of the appropriate page size of the Kernellnterface area fpage.

~ (26/58) 5 (6)
s The size of the kernel interface page are2’is
UtcbArea Specifies the fpage where the kernel should map the UTCBs of all threads executing in the

address space. The fpage must fit entirely into the user-accessible part of an address space and
must not overlap with the KIP area. The fpage size has to be at least the smallest supported
hardware-page size. In fact, the size of the UTCB area restricts the maximum number of threads
that can be created in the address space. See the kernel interface page for the space and alignment
that is required for UTCBs.

The value is ignored if there is at least one active thread in the address space.

Utcbinfo [KernelinterfacePage Field)]

Permits to calculate the appropriate page size of the UTCB area fpage and specifies the size and
alignment of UTCBs. Note that the size restricts the total number of threads that can reside in
an address space.

™~ (10/42) 5(6) @ (6) ™ (10)

s The minimalarea sizefor an address space’s UTCB areais The size of the UTCB area limits
the total number of threadsto 2°mk < 2°.

m UTCB size multiplier.

42 SPACECONTROL

a The UTCB location must be aligned 2§. The total size required for one UTCB28m.

Redirector= nilthread
The current redirector setting for the specified space is not modified.

Redirector= anythread
All threads within the specified space are allowed to communicate with any thread in the system.

Redirectors anythread nilthread
All threads within the specified address space are only allowed to send an IPC to a local thread
or to a thread in the same address space as the specified redirector. All other send operations
will be deflected to the redirector, tmedirected bit(see page 62) in the received message will
be set, and thintendedReceiveFCR will indicate the intended receiver of the message.

control The control field is architecture specific (see Appendix A.5). It is undefined for some architec-
tures, but should for reasons of upward compatibility be set to zero.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set ifresult= 0. Undefined ifresult:0.

=1 No privilege. Current thread does not have privilege to perform operation.

=3 Invalid space. Th&paceSpecifiggarameter specified an invalid thread ID.

-6 Invalid UTCB area. Specified UTCB area too small (see UTCB info on page 4) or not within
user accessible virtual memory region (see Memory Descriptors on page 5).

7 Invalid KIP area. Specified KIP area too small (see KIP area info on page 4) or not within user
accessible virtual memory region (see Memory Descriptors on page 5) or KIP area overlaps with
UTCB area.

control Delivers the space control value that was effective for the thread when the operation was invoked.

The value is architecture specific.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/space.h>

SPACECONTROL 43

Word SpaceControl (Threadld SpaceSpecifier, Word control, Fpage KernellnterfacePageArea, UtcbArea, Threadld
Redirector, Word& oldControl)

Convenience Programming Interface

Support Functions:

Word ErrorCode ()
Word ErrNoPrivilege
Word ErrinvalidSpace
Word ErrUtcbArea
Word ErrKipArea

44

SPACECONTROL

Chapter 5

IPC

46 MESSAGES AND MESSAGE REGISTERS (MRS)

5.1 Messages And Message Registers (MRs) [Virtual Registers]

Messages can be sent and received throughrheystem call (see page 59). Basically, the sender writes a message
into the sender's message registers (MRs) and the receiver reads it from the receiver's MRs. Each thread has 64 MRs,
MR o...63. A message can use some or all MRs to transfer untyped words; it can include memory strings and fpages
which are also specified using MRs.

MRs arevirtual registers(see page 11), but they are more transient than TGRRs are read-once registersince
an MR has been read, its value is undefined until the MR is written again. The send phase of an IPC implicitly reads all
MRs; the receive phase writes the received message into MRs.

The read-once property permits to implement MRs not only by special registers or memory locations, but also by
general registers. Writing to such an MR has to block the corresponding general register for code-generator use; reading
the MR can release it. Typically, code generated by an IDL compiler will load MRs just beforecays$tem call and
store them to user variables just afterwards.

Messages

A message consists of up to 3 sections: the mandatmysage tagollowed by an optionalintyped-wordsection,
followed by an optionatyped-itemssection. The message tag is always held in (MRt contains message control
information and thenessage labebhich can be freely set by the user. The kernel associates no semantics with it. Often,
the message label is used to encode a request key or to define the method that should be invoked by the message.

MsgTag [MR o]

Iabe|<16/4g) flags<4) t (6) U (6)

u Number of untyped words following word 0. MR ,, hold the untyped words: = 0 denotes
a message without untyped words.

¢ Number of typed-item words following the untyped words or the message tag if no untyped
words are present. The typed items use MR . .+:. A message without typed items has
t=0.

flags Message flags, seed systemcall, page 59.

label Freely available, often used to specify the request type or invoked method.

untyped words[MR 1.. ..]
The optional untyped-words section holds arbitrary data that is untyped from the kernel’s point
of view. The data is simply copied to the receiver. The kernel associates no semantics with it.

typed items[MR 4 y1...u+t]

MESSAGES AND MESSAGE REGISTERS (MRS) 47

The optional typed-items section is a sequence of items suelkriag items(page 54)map
items(page 51), andrant itemg(page 53). Typed message items have their type encoded in the
lowermost 4 bits of their first word:

OhRhRC Stringltem see page 54
100C Mapltem see page 51
101C" Grantltem see page 53
110C Reserved
111C' Reserved

The C bit signals whether the typed item is followed by another typed it€m=(1) or is the
last one of the typed-item sectio@' (= 0). The typed itemsnustexactly fit into MRy 41, .v+¢.

Note thatC' andt¢ redundantly describe the message. This is by intention. (Tlodét allows
efficient message parsing, wheregas u can be used to store all MRs of a message to memory
without parsing the complete message. Upon message sendin@, litie are completely ig-
nored. The kernel will, however, ensure that the MRs on the receiver side will ha¢e lbits

set properly.

Example Messages

struct (label, Word [2] w)

Word wo (32/64) MR 2
Word w1 (32/64) MR
label (16 /48) flags t=20 u=2 MR o
struct (abel, Mapltemm)
Mapltemm

1000 MR 12

label (16,48) flags t=2 u=0 MR o

struct (label, Word w, Stringltem sy, s5)

Stringltemssg
OhhO MR 4,5

Stringltems;
Ohhl MR 2 3

s

Word w (32/64) MR ;

label 16 /48) flags t=4 u=1 MR ¢

struct (abel, Word [3] w, Mapltemm, Grantltem g, Stringltem s)

48 MESSAGES AND MESSAGE REGISTERS (MRS)

Stringltems
0hhO MR g9
Grantltemg
1011 MR 6,7
Mapltemm
1001 MR 4,5
Word ws (32/64) MR 3
Word wo (32/64) MR 2
Word w1y (32/64) MR 1
label (16,48) flags t=6 u=3 MR ¢

Generic Programming Interface
The listed generic functions permit user code to access message registers independently of the processor-specific MR
model. All functions are user-level functions; the microkernel is not involved.

MsgTag

#include <l4/ipc.h>

struct MSGTAG { Word raw }

MsgTag Niltag
A message tag with no untyped or typed words, no label, and no flags.
Bool == (MsgTag|,) [IsMsgTagEqudl
Bool '= (MsgTag|,) [IsMsgTagNotEquél
Compares all field values of two message tags.
Word Label (Msg Tag}
Word UntypedWords (Msg Tag }

Word TypedWords (Msg Tag }
Delivers the message label, number of untyped words, and number of typed words, respectively.

MsgTag + (MsgTag t, Word labél [MsgTagAddLabél
MsgTag += (MsgTag t, Word labgl [MsgTagAddLabelTo

Adds a label to a message tag. Old label information is overwritten by the new label.
MsgTag MsgTag ()

void SetMsgTag (MsgTag }
Delivers/sets MR.

MESSAGES AND MESSAGE REGISTERS (MRS) 49

Convenience Programming Interface
IDL-compiler generated Operations
IDL code generators are not restricted to the generic interface for accessing MRs. Instead, they can use processor-specific
methods and thus generate heavily optimized code for MR access.

However, such processor-specific MR operations are not generally defined and should be used exclusively
by processor-specific IDL code generators. All other programs must use the operations defined in this
generic interface.

Msg

#include <l4/ipc.h>

struct MsG { Word raw [64] }

void Put (Msg& msg, Word |, int u, Word&] ut, int t, {Mapltem, Grantltem, Stringltef& Items) [MsgPut
Loads the specified parameters into the memory objsgt The parameters andt respectively
indicate number of untyped words and number of typed words (i.e., the total size of all typed
items). It is assumed that timesgobject is large enough to contain all items.

void Get (Msg& msg, Word& ut{Mapltem, Grantltem, Stringltef& Items) [MsgGej
Stores thansgobject into the specified parameters. Type consistency between the message in
the memory object and the specified parameter lisbichecked.

MsgTag MsgTag (Msgé& msg [MsgMsgTag

void SetMsgTag (Msg& msg, MsgTag)t [SetMsgMsgTag
Delivers/sets the message tag of thegobject.

Word Label (Msg& msg [MsgLabe]

void SetlLabel (Msg& msg, Word labgl [SetMsgLabe]
Delivers/sets the label of thesgobject.

void Load (Msg& msg [MsgLoad
Loads message registers MR from themsgobiject.

void Store (MsgTagt, Msg& msg [MsgStorg
Stores the message tagnd the current message beginning with M#® the memory object
msg The number of message registers to be stored is derivedifrom

void Clear (Msg& msg [MsgCleat
Empties thansgobject (i.e., clears the message tag).

void Append (Msg& msg, Word Ww [MsgAppendWoid
void Append (Msg& msg, Mapltem in [MsgAppendMapltem
void Append (Msg& msg, Grantltem)y [MsgAppendGrantltem
void Append (Msg& msg, Stringltem)s [MsgAppendSimpleStringltém
void Append (Msg& msg, Stringltem&)s [MsgAppendStringltem

Appends an untyped or a typed item to timsgobject. Compound strings must always be
passed in by reference. A compound string passed by value will be treated as a simple string
(see page 54). Itis assumed that there is enough memory mgfebject to contain the new

item.

void Put (Msg& msg, Word u, Word W [MsgPutWordl

Puts an untyped word at untyped word positio(first untyped word has position 0) in tiesg
object. It is assumed that the object contains at leastl untyped words.

void Put (Msg& msg, Word t, Mapltem)n [MsgPutMaplterp

50 MESSAGES AND MESSAGE REGISTERS (MRS)

void Put (Msg& msg, Word t, Grantltem)g [MsgPutGrantlterh
void Put (Msg& msg, Word t, Stringlten) s [MsgPutSimplStringltemn
void Put (Msg& msg, Word t, Stringltem&)s [MsgPutStringltern

Puts a typed item into thmisgobject, starting at typed word positian(first typed word has
position 0). Compound strings must always be passed in by reference. A compound string
passed by value will be treated as a simple string (see page 54). Itis assumed that that the object
has enough typed words to contain the new item.

Word Get (Msg& msg, Word u [MsgWorg

void Get (Msg& msg, Word u, Word& v [MsgGetWordl
Delivers the untyped words at positian It is assumed that the object contains at least 1
untyped words.

Word Get (Msg& msg, Word t, Mapltem& n [MsgGetMaplter
Word Get (Msg& msg, Word t, Grantltem&)g [MsgGetGrantlterh
Word Get (Msg& msg, Word t, Stringltem&)s [MsgGetStringltern

Delivers the typed item starting at typed word positiont is assumed that the requested item
is of the right size and type. Returns the size (in words) of the delivered item.

Low-Level MR Access

#include <l4/ipc.h>

void StoreMR (int 7, Word& w)

void LoadMR (int ¢, Wordw)
Delivers/sets MR.

void StoreMRs (int 7, k, Word& [k] w)

void LoadMRs (int 4, k, Word& [k] w)
Stores/loads MR ;1 «—1 to/from memory.

MAPITEM 51

572 Mapltem [Data Type]

An fpage(see page 36) or 10 fpage that should be mapped is sent to the mappee as part of a message. A map operation
is a no-op within the same address space. The fpage is specified by a two-word descriptor:

snd fpages /60) Orwz | MR

snd base / 102¢5 /54 0 (6 100C | MR;

access rightswz The effective access rights for the newly mapped page are calculated by bitwise AND-ing the
access rights specified in tisad fpageand the access rights that the mapper itself has on that
fpage. As such, the mapper can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the sizesnéltfpages larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 57).
If the size of thesnd fpage2?, is larger than the receive windo®/, the send base indicates
which region of thesnd fpagés transmitted. More precisely:

send region = fpage (addrs + 2"k,2"), for some k > 0 :
addrs + 2"k < addrs + (sndbase mod 2°) < addrs + 2"k + 2"

and wherexddr, is the base address of thed fpage If the size of thesnd fpage2®, is smaller
than the receive window2", the send base indicates where in the receive windowriddpage
is mapped. More precisely:

receive region = fpage (addr, + 2°k,2%), for some k > 0 :
addr, + 2°k < addr, + (sndbase mod 2") < addr, + 2°k + 2°

and wherexddr, is the base address of the receive window.

Pages already mapped in the mappee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped. For performance reasons extension of access rights is possible without prior unmapping,
iff the very same mapping already exists. This is the case, when

e the mapper maps from the same address space as the existing mapging;

o the mapper maps from the same virtual source address as the existing mapping;
o the mapper maps to the same virtual destination address as the existing mapging;
e the object (physical address) is the same as the existing mapping.

Access rights can not be revoked by mapping. The access rights of the resulting mapping are a bitwise OR of the existing
and the new mapping’s access rights. Access rights are not extended recursively.

Generic Programming Interface

#include <l4/ipc.h>

struct MAPITEM { Word raw [2] }

Mapltem Mapltem (Fpage f, Word SndBaye
Delivers a map item with the specified fpage and send base.

52

Bool Mapltem (Mapltem m
Delivers true if map item is valid. Otherwise delivers false.

Fpage SndFpage (Mapltem m

Word SndBase (Mapltem n)
Delivers fpage/send base of map item.

MAPITEM

[IsMapltem

[MapltemSndFpade
[MapltemSndBage

GRANTITEM 53

5.3 Grantltem [Data Type]

An fpage(see page 36) or 10 fpage that should be granted is sent to the mappee as part of a message. It is specified by a
two-word descriptor:

snd fpagg s /60) Orwz | MR

snd baSE/lOZé2/54) 0(6) 101C MR ;

access rightswz The effective access rights for the granted page are calculated by bitwise anding the access rights
specified in thesnd fpageand the access rights that the mapper itself has on that fpage. As such,
the granter can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the sizesnéltfpages larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 57).
If the size of thesnd fpage 2, is larger than the receive windo®’, the send base indicates
which region of thesnd fpages transmitted. More precisely:

send region = fpage (addrs +2"k,2"), for some k > 0 :
addrs + 2"k < addrs + (sndbase mod 2°) < addrs + 2"k + 2"

and wherexddr, is the base address of thed fpage If the size of thesnd fpage2®, is smaller
than the receive window", the send base indicates where in the receive windowribddpage
is mapped. More precisely:

receive region = fpage (addr, + 2°k,2%), for some k > 0 :
addr, + 2°k < addr, + (sndbase mod 2") < addr, + 2°k + 2°

and whereaxddr, is the base address of the receive window.

Pages already mapped in the grantee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped.

Generic Programming Interface

#include <l4/ipc.h>

struct GRANTITEM { Word raw[2] }

Grantltem Grantltem (Fpage f, Word SndBake
Delivers a grant item with the specified fpage and send base.

Bool Grantltem (Grantltem g [IsGrantiten}
Delivers true if grant item is valid. Otherwise delivers false.

Fpage SndFpage (Grantltem g [GrantltemSndFpade

Word SndBase (Grantltem g [GrantitemSndBage
Delivers fpage/send base of grant item.

54 STRINGITEM

5.4 Stringltem [Data Type]

A string item specifies a sequence of bytes in user space. No alignment is required, the maximal string size is 4 MB. In
send messages, such a string is copied to the receiver buffer when transferring the message. String items are also used to
specify receive buffers in buffer registers on the receiver’s side.

Simple String

A simple string is a contiguous sequence of bytes.

string ptr (32 /64) MR ;41
string length 2 /54) 0] O¢s 0hhC| MR;
string ptr The start address of the string to be sent or the start address of the buffer for receiving a string (no
alignment restrictions). However, the string/buffer must fit entirely into the legally addressable
user space.
string length The length of the string to be sent or the size of the receive buffer. In the second case, strings

up to (including) this length can be received. Maximum string length is 4 M bytes, even if the
according field is 54 bits wide on 64-bit processors.

hh Cacheability hint. Except fath = 00, the semantics of this parameter depends on the processor
type (see Appendices A.6 and B.5).

hh = 00 Use the processor’s default cacheability strategy. Typically, cache lines are allocated for data
read and written (assuming that the processor’s default strategy is write-back and write-allocate).

Compound String

A compound string is a noncontiguous string that consists of multiple contiguous substrings which can be scattered
around the entire user address space. The substrings must not overlap. For send and receive IPC operations, a compound
string is handled as a single logical string. When sending such a string through IPC, the substrings are transferred as if
they were one contiguous string (gather). On the receiver side, a compound string buffer is treated as one logical buffer.
The corresponding received string is scattered among the compound buffer’'s substrings.

A compound string can be specified as a sequence of substrings where each substring has the form of a simple string
except that theontinuationflag c is set for all but the last substring. 4fsubsequent substrings have the same size, e.g.,

for equally sized buffers, a single length word can be used fof allbstrings so that only + 1 words instead o2j

words are required.

length word]]
substring lengthas /5.4) clj—1) [0ORRC
The type informatiordhhC is only required for the first word of a string descriptor. The field is
ignored for further length words in a compound-string descriptor.
j Number of subsequent string-ptr words. These string ptrs spgsifypstrings that have all the
same substring length.
c=0 Continuation flag reset. The compound string descriptor ends withi‘thstring ptr word fol-

lowing the current length word.

c=1 Continuation flag set. The current length word gretring-ptr words are followed by (at least)
one substring descriptor, i.e., another length word, etc.

STRINGITEM 55

Example]
P substring 1 ptr (32/64) MR 442
Substring_H Iength(22/54> 0 0 (5) 0 (4) MR itj+1
substring ptr (32/64) MR i+
substring ptr (32/64) MR i+1
substring...; length 2z /54) 11 j—=1¢) |0hhC| MR;

Generic Programming Interface

#include <l4/ipc.h>

struct STRINGITEM { Word raw [*] }

Bool Stringltem (Stringltemé& 9 [IsStringlteny
Delivers true if string item is valid. Otherwise delivers false.

Bool CompundString (Stringltem& 9
Delivers thec-flag value (true = set).

Word Substrings (Stringltem& 9

void* Substring (Stringltem& s, Word h
Delivers number of substrings/addressutti substring.

Stringltem Stringltem (int size, void* addregs
Delivers a simple string item with the specified size and location.

Stringltem &+ = (Stringltem& dest, Stringltem AdditionalSubstrjng [AddSubstringTp
Append substring to the string item. It is assumed that there is enough memory in the string item
to contain the new substring.

Stringltem &+=(Stringltem& dest, void* AdditionalSubstringAddrgss [AddSubstringAddresslo
Append a new substring pointer to the string item. It is assumed that there is enough memory in
the string item to contain the new substring pointer.

Convenience Programming Interface

Support Functions:

#include <l4/ipc.h>

struct CACHEALLOCATION HINT { Word raw }

CacheAllocationHintUseDefaultCacheLineAllocation

56

STRINGITEM

Bool == (CacheAllocationHint I,y [IsCacheAllocationHintEqual

Bool != (CacheAllocationHint I,) [IsCacheAllocationHintNotEqupl
Compares two cache allocation hints.

CacheAllocationHintCacheAllocationHint (Stringltem ¥
Delivers the cache allocation hint of the string item.

Stringltem 4 (Stringltem s, CacheAllocationHin) h [AddCacheAllocationHirt

Stringltem +=(Stringltem s, CacheAllocationHin) h [AddCacheAllocationHintTo
Adds a cache allocation hint to a string item. An already existing hint is overwritten.

STRING BUFFERS AND BUFFER REGISTERS (BRS) 57

55 String Buffers And Buffer Registers (BRS) [Pseudo Registers]

For receiving messages that contain string items, the receiver has to specify appropriate string buffers. Such buffers are
described by string items (see page 54). A buffer can be contiguous (simple string) or non-contiguous (compound string).

Such buffer descriptors are held in 33 per-thread Buffer Registets BR The number of buffer registers is sufficient
to specify, for example, one compound buffer of 31 equally-sized sub-buffers. Up to 16 buffers can be specified provided
that not more than 33 BRs are required.

When a message is received, the first message string item is copied into the first buffer string item which starts at BR
the next message string item is copied to the next buffer string item, etc. The list of buffer strings is terminated by having
the C bit in the item type specifier of the last string zeroed.

BRs areregistersin the sense that they are per-thread objects and can only be addressed directly, not indirectly through
pointers. BRs are static objects like TCRs, i.e., they keep their values until explicitly modified. BRs can be mapped to
either special registers or to memory locations.

Acceptor [BRo]]
RevWindow g /60) 000s
BR specifies which typed items are accepted when a message is received.
RcvWindow Fpage (without access bits) that specifies the address-space window in which mappings and
grants are acceptedNilpage denies any mapping or grantinGompleteAddressSpaeecepts
any mapping or granting.
s Stringltems are accepted #f= 1.

buffer string items [BR1...]
contain the valid buffer string items. Ignoredsit= 0 in BRy.

Generic Programming Interface

The listed generic functions permit user code to access buffer registers independently of the processor-specific BR model.
All functions are user-level functions; the microkernel is not involved.

Acceptor

#include <l4/ipc.h>

struct ACCEPTOR { Word raw }

Acceptor UntypedWordsAcceptor
Acceptor StringltemsAcceptor

Acceptor MapGrantltems (Fpage RcvWindow
Delivers an acceptor which allows untyped words, string items, or mappings and grants.

Acceptor + (Acceptor |,) [AddAcceptar

Acceptor +=(Acceptor |,) [AddAcceptorTp
Adds mappings/grants or string items to an acceptor. Adding a non-nil receive window will
replace an existing window.

Acceptor — (Acceptor |,) [RemoveAcceptpr

Acceptor —= (Acceptor |,) [RemoveAcceptorFrgm
Removes mappings/grants or string items from an acceptor. Removing a non-nil receive window
will deny all mappings or grants, regardless of the size of the receive window.

58

STRING BUFFERS AND BUFFER REGISTERS (BRS)

Bool Stringltems (Acceptor a [HasStringltems

Bool MapGrantltems (Acceptor & [HasMapGrantltemis
Checks whether string items/mappings are allowed.

Fpage RcvWindow (Acceptor &

Delivers the address space window where mappings and grants are accepted. Digiages
if mappings or grants are not allowed.

void Accept (Acceptor a
Sets BRy.

void Accept (Acceptor a, MsgBuffer&) [AcceptStrings
Sets BR, and loads the buffer descriptiérinto BR; ...

Acceptor Accepted ()
Delivers BRy.

Convenience Programming Interface

MsgBuffer

#include <l4/ipc.h>

struct MSGBUFFER { Word raw [32] }

void Clear (MsgBuffer& B [MsgBufferClear
Clears the message buffer (i.e., inserts a single empty string into it).

void Append (MsgBuffer& b, Stringltem)s [MsgBufferAppendSimpleRcvString

void Append (MsgBuffer& b, Stringltem *) [MsgBufferAppendRcvStrihg

Appends a string buffer to the message buffer. Compound strings must always be passed in by
reference. A compound string passed by value will be treated as a simple string. It is assumed
that there is enough memory in the message buffer object to contain the new string buffer.

Low-Level BR Access

#include <l4/ipc.h>

void StoreBR (int 7, Word& w)

void LoadBR (int i, Wordw)
Delivers/sets the value of BR

void StoreBRs (int i, k, Word& [k])

void LoadBRs (int i, k&, Word& [k])
Stores/loads BR. ;+x—1 to/from memory.

Code generators of IDL and other compilers are not restricted to the generic interface. They can use any processor-specific
methods and optimizations to access BRs.

IPC 59

56 IPC [systemcall]

Threadld to E— Threadld from
Threadld FromSpecifier
Word Timeouts

IPC is the fundamental operation for inter-process communication and synchronization. It can be used for intra- and
inter-address-space communication. All communication is synchronous and unbuffered: a message is transferred from
the sender to the recipient if and only if the recipient has invoked a corresponding IPC operation. The sender blocks until
this happens or until a period specified by the sender has elapsed without the destination becoming ready to receive.
IPC can be used to copy data as well amtapor grant fpages from the sender to the recipient. For the description of
messages see page 46. A single IPC call combines an optional send phase and an optional receive phase. Which phases
are included is determined by the paramete@ndFromSpecifier Transitions between send phase and receive phase are
atomic.
Ipc operations are also controlled by MRs, BRs and some T&RsTimeouand SndTimeouare directly specified
as system-call parameters. Each timeout can be (,e., never expire), relative or absolute. For details on timeouts see
page 28.

Variants

To enable implementation-specific optimizations, there exist two variants ofrtheyistem call. Functionally, both
variants are identical. Transparently to the user, a kernel implementation can unify both variants or implement differently
optimized functions.

IPC Default IPC function. Must always be used except if all criteria for usimgclare fulfilled.

LiPC IPC function that may be optimized for sending messages to local threads. Should be used
whenever it is absolutely clear that in the overwhelming majority of all invocations

e asend phase is includeahd

e the destination thread is specified as a local threaci;
e areceive phase is includeahd

e the destination thread runs on the same proceasaor;

the RcvTimeout iso, and

e the IPC includes no map/grant operations.

Input Parameters

to = nilthread IPC includes no send phase.

to # nilthread Destination thread; IPC includes a send phase

FromSpecifier= nilthread
IPC includes no receive phase.

60

IPC

FromSpecifier= anythread

IPC includes a receive phase. Incoming messages are accepted from any thread (including
hardware interrupts).

FromSpecifier= anylocalthread

IPC includes a receive phase. Incoming messages are accepted from any thread that resides in
the current address space.

FromSpecifier= nilthread, # anythread# anylocalthread

Ipc includes a receive phase. Incoming messages are accepted only from the specified thread.
(Note that hardware interrupts can be specified.)

Timeouts

RcvTimeout

SndTimeout

SndTimeout6) RevTimeout;¢)

The receive phase waits until either a message transfer startsReyfieneouexpires. Ignored

for send-only IPC operations.

For relative receive timeout values, the receive timeout starts taftenthe send phase has
successfully completed. If the receive timeout expires before the message transfer has been
started IPC fails with “receive timeout”. A pending incoming messageceived if the timeout

period is 0.

If the send timeout expires before the message transfer could start the IPC operation fails with
“send timeout”. A send timeout of O ensures that IPC happens only if the addressed receiver is
ready to receive when the send IPC operation is invoked. Otherwise, IPC fails immediately, i.e.,
without blocking.

MsgTag [MR o]

label
[MR 1...u]

[MR u+1...u+t]

label (16 /43) 0@y |p| te u (6)

Message head of the message to be sent. Only the upper 16/48 bits are freely available. The
lower 16 bits hold thesndControlparameter. It describes the message to be sent and contains
some control bits; ignored if no send phase.

Number of untyped words following word 0. MR ,, hold the untyped words: = 0 denotes
a message with no untyped words.

Number of words holding typed items that follow the untyped words (or the message tag if no
untyped words are present). The typed items use,MRand following MRs, potentially up to
MR 3. t = 0 denotes a message without typed items.

Normal (unpropagated) send operation. The recipient gets the original sender’s id.

Propagating send operation. ThitualSenderTCR specifies the id of the originator thread.

(i.e., the thread to send the message on behalf of). If originator thread and current sender, or
current sender and receiver reside in the same address space, propagation is always permitted.
Otherwise, IPC occurs unpropagated. Propagation is also allowed if the originator thread is an
interrupt thread waiting (closed) for the current thread, or if the current sender is a redirector
for the originator thread (or there exists a chain of redirectors from the originator to the current
sender).

If propagation is permitted, the receiver receives the originator’s id instead of the current sender’s
id, thep bit in the receiver's MsgTag is set, and the current sender’s id is stored in the receiver’s
ActualSendeT CR. If the originator thread is waiting (closed) for a reply from the current sender,
the originator’s state is additionally modified so that it now waits for the new receiver instead of
the current sender.

Freely available, often used to specify the request type or invoked method, respectively.
Untyped words to be sent. Ignored if no send phase.

Typed items to be sent. Ignored if no send phase.

IPC

61

XferTimeouts [TCR]

XferTimeout Snd;6) XferTimeout Rev¢)

Once a message transfer has been started, the time for transferring the message is roughly
bounded by the minimum of sender’s and receiv&ferTimeout.“Roughly” means that xfer
timeouts are only checked when message copy raises a pagefault in the sender’s or in the re-
ceiver's address space. Copying data and mapping/granting is assumed to take no time. A
relative transfer timeout always refers to the beginning of the message transfer (actually when
the first page fault is raised). Logically, at that point it is transferred into an absolute timeout
which then is used as send and receive timeout for the first and all subsequent page-fault RPCs
in the message transfer.

If the effective transfer timeout expires during the message transfer, IPC fails with “xfer timeout”
(on both sides). Additional information specifies whether the page fault was in the receiver’s or
in the sender’s address space and which part of the message was already transferred. Each thread
has two transfer timeouts. One for the send phase and one for the receive phase.

Acceptor [BRo]

RcvWindow

RevWwindow o5 /60) 000s

BR specifies which typed items are accepted when a message is received.

Fpage (without access bits) that specifies the address-space window in which mappings and
grants are acceptedilpage denies any mapping or grantinGompleteAddressSpaeaecepts
any mapping or granting.

Stringltems are accepted #f= 1.

buffer string items [BR1...]

contain the valid buffer string items. Ignoredsit= 0 in BR.

Output Parameters

from

Thread ID of the sender from which the IPC was received. Thread IDs are delivelechhs
thread IDsiff they identify a thread executing in the same address space as the current thread. It
does not matter whether the sender specified the destination as local or global id.

Only defined for IPC operations that include a receive phase.

MsgTag [MR o]

Iabe|<16/48) EXrp t (6) U (6)

If the IPC operation included a receive phase, Mebntains the message tag of the received
message. The upper 16/48 bits contain the user-specified label. The lower bits describe the
received message, contain the error indicator, and the cross-processor IPC indicator.

MR, is defined even if the IPC operation did not include a receive pHadbe send-only case,

MR o returns the error indicator.

Number of untyped words following word @. = 0 means no untyped words. For IPC opera-
tions without receive phase,= 0 is delivered.

Number of received words that hold typed items= 0 means no typed items. For IPC opera-
tions without receive phase~= 0 is delivered.

Propagated IPC. If resep & 0) the IPC was not propagated. If spt£ 1) the IPC was propa-
gated and th&romSpecifieindicates the originator thread’s id. ThetualSendespecifies the
id of the thread which performed the propagation.

62

label

[MR 1...u]

MR w+1...u+k]

IPC

Redirected IPC. If reset (= 0) the IPC was not a redirected one. If set=£ 1) the IPC was
redirected to the current thread, and theendedReceivef CR specifies the id of the thread
supposed to receive the message.

Cross-processor IPC. If reseX (= 0) the received IPC came from a thread running on the
same processor as the receiver. If sS€t£ 1) the received IPC was cross-processor. For IPC
operations without receive phase€,= 0 is delivered.

Error indicator. If resetE = 0) the IPC operation terminated successful.
If set (E = 1) IPC failed. If the send phase was successful but a receive timeout occurred
afterwards, or if a message could only be partially transferred, the entire IPC fails. The error

code and additional information can be retrieved from the ErrorCode TCR. The laélelst,
andw are valid if the error code signals a partially received message.

Label of the received message. For IPC operations without receive phase, the label is 0.
Untyped words that have been received. Undefined if no receive phase.

Typed items that have been received. Undefined if no receive phase.

ErrorCode [TCR]

D
errors 1, 2,3
e=1
e=2
e=3

errors 4,5,6,7

offset

T (28/56) €(3) |P

Only defined if the error indicatoF in MRy is set.IPC failed, i.e., was not correctly completed.

Thex field depends on the error code, see below. Tfield specifies whether the error occurred
during send or receive phase. If the error occurred during the receive phase the send phase (if
any) was completed successfully before. If the error occurred during the send phase, the receive
phase (if any) was skipped.

Specifies whether the error occurred during the send plpase)(or the receive phase € 1).

~ (28/60) e@m) [p

Error happened before a partner thread was involved in the message transfer. Therefore, the
error is signaled only to the thread that invoked the failing IPC operation.

Timeout
Fromis undefined in this case.

Non-existingpartner. If the error occurred in the send phdsajoes not exist. Anythreadas

a destination is illegal and will also raise this error.) If the error occurred in the receive phase,
FromSpecifiedoes not exist. RromSpecifiee= anythreads legal, and thus will never raise this
error.)

Canceledby another thread (system caltchange registeys

oﬁset(28/60> €3 |P

A partner thread is already involved in the IPC operation, and the error is therefore signaled to
both threads.

The message transfer has been started and could not be completexdfs€tidentifies exactly
the number of bytes that have been been transferred successfully so far through string items.

Message Overflow

A message overflow can occur (1) if a receiving buffer string is too short, (2) if not enough
buffer string items are present, and (4) if a map/grant of an fpage fails because the system has
not enough page-table space available. dtfgetin conjunction with the received MRs permits
sender and receiver to exactly determine the reason.

Xfer timeoutduring page fault in the invoker’'s address space.

IPC 63
e=06 Xfer timeoutduring page fault in the partner’s address space.
e="17 Abortedby another thread (system cakchange registeys
Pagefaults

Three different types of pagefault can occur during ipc: pre-send, post-receive, and xfer pagefaults. Only xfer pagefault
are critical from a security point of view. Fortunately, messages without strings will never raise xfer pagefaults and need
thus no special pagefault provisions:

Pre-send pagefaults

happen in the sender’s contebeforethe message transfer has really started. The destination
thread is not involved; in particular, it is not locked. Therefore, the destination thread might
receive another message or time out while the sender’s pre-send pagefault is handled. Send and
transfer timeouts do not control pre-send pagefaults. Pre-send pagefaults are uncritical from a
security point of view, since only the sender’s own pager is involved and only the sender could
suffer from its potential misbehavior.

Post-receive pagefaults

happen in the receiver’s contexfter the message has been transferred. The sender thread is no
longer involved, especially, it is no longer locked. Consequently, post-receive pagefault are not
subject to send and transfer timeouts. Like pre-send pagefaults, post-receive pagefaults are also
uncritical from a security perspective since only the receiver and its pager are involved.

Xfer pagefaults happen while the message is being transferred and both sender and receiver are involved. There-

fore, xfer pagefaults are critical from a security perspective: If such a pagefault occurs in the
receiver’s space, the sender may be starved by a malicious receiver pager. An xfer pagefault in
the sender’s space and a malicious sender pager may starve the receiver. As such, xfer pagefaults
are controlled by the minimum of sender’s and receiver’s xfer timeouts.

However, xfer pagefaults can only happen when transferring strifgad mes-
sages without strings or receive buffers without receive string buffers are guar-
anteed not to raise xfer pagefaults.

Generic Programming Interface

System-Call Function:

#include <l4/ipc.h>

MsgTag lpc (Threadld to, FromSpecifier, Word Timeouts, Threadld& from
MsgTag Lipc (Threadld to, FromSpecifier, Word Timeouts, Threadld& from

Note that message registers have read-once semantics and that returning the message tag implies rgadihg MR
contents of the message tag is therefore lost if the application does not implicitly store the return valuerdfiPc .

Convenience Programming Interface

Derived Functions:

#include <l4/ipc.h>

MsgTag Call (Threadld tQ
{ Call (to, never, never)

64

IPC

MsgTag Call (Threadld to, Time SndTimeout, RcvTimégout [Call_Timeout$
{ Ipc (to, to, Timeouts (SndTimeout, RcvTimeout),}-)

MsgTag Send (Threadld t9
{ Send (to, never)

MsgTag Send (Threadld to, Time SndTimegQut [SendTimeout
{ Ipc (to, nilthread, Timeouts (SndTimeout, -),}-)

MsgTag Reply (Threadld t9
{ Send (to, ZeroTime})

MsgTag Receive (Threadld fron)
{ Receive (from, never)

MsgTag Receive (Threadld from, Time RcvTimegut [ReceiveTimeou}
{ Ipc (nilthread, from, Timeouts (-, RcvTimeout), })

MsgTag Wait (Threadld& from)
{ Wait (never, from)}

MsgTag Wait (Time RcvTimeout, Threadld& frgm [Wait Timeoug
{ Ipc (nilthread, anythread, Timeouts (-, RcvTimeout), frgm)

MsgTag ReplyWait (Threadld to, Threadld& from
{ ReplyWait (to, never, from}

MsgTag ReplyWait (Threadld to, Time RcvTimeout, Threadld& frpm [ReplyWaitTimeouj
{ Ipc (to, anythread, Timeouts (TimePeriod(0), RcvTimeout), fr¢m)

void Sleep (Time)
{ SetMsgTag (Receive (MyLocalld, t))

MsgTag Lcall (Threadld tg
{ Lipc (to, to, Timeouts (never, never), })

MsgTag LreplyWait (Threadld to, Threadld& from
{ Lipc (to, anylocalthread, Timeouts (TimePeriod (0), never), from)

Support Functions:

#include <l4/ipc.h>

Bool IpcSucceeded(Msg Tag }

Bool IpcFailed (Msg Tag}
Delivers the state of the error indicator (thebit of MR o).

Bool IpcPropagated (Msg Tag }
Bool IpcRedirected (Msg Tag }

Bool IpcXcpu (Msg Tag }
Checks if the IPC was propagated/redirected/cross cpu.

Word ErrorCode ()
Threadld IntendedReceiver ()

IPC

Threadld ActualSender ()
Delivers the error code/intended receiver TCR/actual sender.

void SetPropagation (Msg& Tag)
Sets the propagation bit.

void SetVirtualSender (Threadld }
Sets the virtual sender TCR.

Word Timeouts (Time SndTimeout, RcvTimeput
Delivers a word containing both timeout values.

65

66

IPC

Chapter 6

Miscellaneous

68 EXCEPTIONHANDLER

6.1 ExceptionHandler [rcr]

An exception handler thread can be installed to receive exception IPCs.

ExceptionHandler

“nilthread specifies the exception handler thread. When a thread raises an exception the kernel sends an
exception IPC message on the thread’s behalf to the thread’s exception handler thread and waits
for a response from the exception handler containing the instruction pointer where the thread
should continue execution in MR The format of the exception IPC message is architecture
specific.

The architectural registers of the faulting thread, BRCRs, and the MRs containing the ex-
ception message are preserved.

—nilthread No exception handler is specified. If an exception is raised the thread is halted and not scheduled
anymore nilthread is the default value for newly created threads.

Generic Programming Interface
#include <l4/thread.h>

Threadld ExceptionHandler ()

void SetExceptionHandler (Threadld ney
Delivers/sets the exception handler TCR.

COP FLAGS 69

6.2 Cop Flags [rcri

Thecoprocessor flagfCR helps the kernel to optimize thread switching for some hardware architectures.

Cop Flags

c7...Co

By resetting a:;-bit to 0, a thread tells the system that it no longer needs coprocesgdhe

kernel findsc; = 0, it concludes that registers and state of coproceisdomot have to be saved.
However, the kernel ensures that the coprocessor can not be used as a covert channel between
different address spaces.

Once a thread has reset bjtit mustsetc; to 1 beforeit issues the next operation on coprocessor

1. Otherwise, coprocessor registers and state might be arbitrarily modified while using it.

Note that the;-bits arewrite-only. Reading them results in an undefined value. Upon thread
creation, alle;-bits are set to 1.

Generic Programming Interface

#include <l4/thread.h>

void SetCopFlag (Word n

void Clr_CopFlag (Word n
Sets/clears coprocessor flag

70 PROCESSORCONTROL

6.3 PROCESSORCONTROL [Privileged Systemcall]

Word ProcessorNo — Word result
Word InternalFrequency

Word ExternalFrequency

Word voltage

Control the internal frequency, external frequency, or voltage for a system processor.

Input Parameters

ProcessorNo Specifies the processor to control. Number must be a valid index into the processor descriptor
array (see Kernel Interface Page, page 4).

All further input parameters have no effect if the supplied value-1s ensuring that the corresponding valuenist
modified. The following description always refers to values- 1.

InternalFrequencysSets internal frequency for processor to the given value (in kHz).

ExternalFrequency
Sets external frequency for processor to the given value (in kHz).

voltage Sets voltage for processor to the given value (in mV). A value of 0 shuts down the processor.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set ifresult= 0. Undefined ifresult0.

=1 No privilege. Current thread does not have privilege to perform operation.

Note that the active internal and external frequency of all processors are available to all threads via the kernel interface
page.

Pagefaults

No pagefaults will happen.

PROCESSORCONTROL

Generic Programming Interface

System-Call Function:

#include <l4/misc.h>

Word ProcessorControl (Word ProcessorNo, control, InternalFrequency, ExternalFrequency, viltage

71

Convenience Programming Interface

Support Functions:

Word ErrorCode ()
Word ErrNoPrivilege

72 MEMORYCONTROL

6.4 MEMORYCONTROL |[Privileged Systemcall]

Word control — Word result
Word attribute
Word attribute
Word attribute
Word attribute

Set the page attributes of the fpages (MR.) to theattribute specified with the fpage.

Input Parameters

control
0 (26/58) k (6
k Specifies the highest MRthat holds an fpage to set the attributes. The number of fpages is thus
k+ 1.
attribute; Specifies the attribute to associate with an fpage. The semantics afttheite; values are

hardware specific, except for the value 0 which specifies default semantics.

FpageListMR,.. . Fpages to be processed.

FpageMR;
fpage(2s/60) 00 fa (o
Fpage to change the attributes. A nilpage specifies a no-op.
a selectsattribute, to be set as the fpages memory attributes.
Output Parameters
result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR

indicates the failure reason.

ErrorCode [TCR] Set ifresult= 0. Undefined ifresult0.

=1 No privilege. Current thread does not have privilege to perform operation.
=5 Invalid parameter. Invalid or unsupported memory attribute.
Pagefaults

No pagefaults will happen.

MEMORYCONTROL

Generic Programming Interface

System-Call Function:

#include <l4/misc.h>

Word MemoryControl (Word control, Word& attributes[4)

Word DefaultMemory

73

Convenience Programming Interface

Derived Functions:

#include <l4/misc.h>

Word SetPageAttribute (Fpage f, Word attribute
{ Word attributes[4]; attributes[0] = attribute; SRtghts(f, 0); LoadMR (O, f);
MemoryControl (0, &attributes);}

Word SetPagesAttributes (Wordn, Fpage& [n] fpages, Word& [4] attributes
{ LoadMRs (0,n, fpages); MemoryControl{ — 1, attributes);}

Support Functions:

Word ErrorCode ()
Word ErrNoPrivilege
Word ErrinvalidParam

74

MEMORYCONTROL

Chapter 7

Protocols

76

7.1 Thread Start Protocol

[Protocol]

THREAD START PROTOCOL

Newly created active threads start immediately by receiving a message from its pager. The received message contains the
initial instruction-pointer and stack-pointer for the thread.

From Pager

Initial SP (32/64)

Initial IP (32/64)

0 (16/48)

0

tZO(G)

UZQ(G)

MR 2

MR ¢

MR o

INTERRUPT PROTOCOL 1

7.2 Interrupt Protocol (protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

—1 (12/44) 0@ | 0@ | t=0¢@ | u=0¢ | MRy

To Interrupt Thread

0 (16/4s) 0@ | t=0@ | u=0¢ | MRy

78

7.3 Pagefault Protocol

[Protocol]

PAGEFAULT PROTOCOL

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

MR 2

MR ¢

MR o

BRo

To Pager]
faulting user-level IR 35 /64)
fault addres$as /64)
-2 (12/44) Orwex 0(4) tZO(G) u:2(6)
rwx Therwz bits specify the fault reason:
r read fault
w write fault
x execute fault
A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, never set. Read and execute accesses will both be
reported by the bit.
Acceptor [BRo]
0 (22/54) s=1@) |0000
The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.
From Pager

Mapltem / Grantltem

0 (16/48)

0 ()

t=2)

v =0 ()

MR 12

MR o

PREEMPTION PROTOCOL

7.4 Preemption Protocol

From Preempted Thread

[Protocol]

ClOCk/2(32/64) (32/64)

Clock m0d2(32/64) (32/64)

=3 (12/44)

0 (1)

0 (1)

t=0¢)

v =2 (6)

79

MR 2
MR

MR o

The preemption message contains the system clock when the thread was preempted. The pre-
emption message is sent with relative timeout 0. If the message can not be delivered (e.g., due
to timeouts) the message is dropped.

80 EXCEPTION PROTOCOL

7.5 Exception Protocol [protocol

The exception IPC contains a label, the faulting instruction pointer, and additional architecture specific exception words.
The reply from the exception handler contains a label, an instruction pointer where the faulting thread is resumed, and an
optional number of additional architecture specific words.

Note that the stack pointer is not explicitly specified to allow architecture specific optimizations.

To Exception Handler

exception word; 1 (32/64) MR 41
exception wordy (s2/64) MR o
IP (32/64) MR |
label (12/44) 0 (4) 0 (4) t=0 @ u=Fk (@) MR o
k Number of exception words.
label specifies the exception type.

=—4 System exceptions are defined for all architectures.

=-5 Architecture specific exceptions.

From Exception Handler

exception reply word, _1 (32/64) MR 41
exception reply wor@ (3s/64) MR o
IP (32/64) MR 1
0 (16/48) O | t=0@) | u=ke | MRo
k Number of exception reply words.

IP Location where execution is resumed in the faulting thread.

SIGMAO RPC PROTOCOL 81

7.6 Sigma0 RPC protocol (protocol]

oy is the initial address space. Although itist part of the kernel, its basic protocol is defined with the kernel. Specific
oo implementations may extend this protocol.

The address spaes is idempotent, i.e., all virtual addresses in this address space are identical to the corresponding
physical address. Note that pages requested trgroontinue to be mapped idempotently if the receiver specifies its
complete address space as receive fpage.

oo gives pages to the kernel and to arbitrary tasks, but only once. The idea is that all pagers request the memory they
need in the startup phase of the system so that afterwartigs exhausted all its memory. Further requests will then
automatically be denied.

Kernel Protocol

To oy
~ (32/64) MR 2
requested fpaggss /64) MR 1
=6 (12/44) O@ | 0@ | t=0@ | u=2¢) | MRo
requested fpage
—1 (22/54) 8(6) Orwzx
s=0 Kernel requests the amount of memory recommendeshidpr kernel use (pagetable and other
kernel-internal data).
s#0 Kernel requests an fpage of siz& The fpage can be located at an arbitrary position but must

contain ordinary memory. If a free fpage of sixeis available, it isgrantedto the kernel.

rwze Therwz bits are ignoredo, always grants fpages with maximum access rights to the kernel.

From o

Kernel memory recommendation

0 (32/64) MR >
amount(ss /64) MR 1
0 (16/48) O@ | t=0¢@ | u=2@ | MRo

amount Amount of memory recommended for kernel use (in bytes).

Grant Response

Grantltem MR 1,2

0 (16/48) 0@ | t=2@ | v=0¢@ | MRo

82

Grant Reject

User Protocol

To oy

requested fpage

br —1
b= —1
TwIr

SIGMAO RPC PROTOCOL
nilpage sz /64) MR 2
0 (28/60) 1010 | MR;
0 (16/48) O@ | t=2@ | v=0@) | MRo
requested attributegs /¢4) MR 2
requested fpaggss /64) MR 1
=6 (12/44) O@ | 0@ | t=0@ | u=2¢) | MRo
b/QlO (22/54) ‘ 3(6) ‘ Orwzx

oo deals with fpages of arbitrary size. A successful response frgroontains an fpage of
physically contiguous memory.

Requests the specific fpage with base addsessl size2®. If the fpage is neither owned by the
kernel nor by a user thread (not even partially), the requested fpage is mapped to the requestor’s
address space and the fpage is marked as owned by the requesting thread (i.e., figage is
marked as being owned by the address space in which thread resides). Fpages belonging to
dedicated-memor{see page 85) can be requested. If the requested fpage is already owned by
the requestor only the page attributes are modified. No new mapping operations happens.

Requests an fpage of si2é but with arbitrary address. If a free fpage of si¥eis available,

it is mapped to the requestor’s address space and marked as owned by the requesting thread
(i.e., fpage isnot marked as being owned by the address space in which thread resides).

is free to use theequested-attributdor choosing a best fitting page. Fpages belonging to
dedicated-memorgsee page 85) are not considered to be free and will not be delivered upon
such anonymous requests. No new mapping operations happens.

Therwz bits are ignoredo, always maps fpages with maximum access rights to the requestor.

requested attributes

=0

#0

From o

Map Response

The page is requested with default attributes.

The page is requested with some architecture dependent attributes.

Mapltem MR 1,2

0 (16/48) 0@ | t=2¢@ | u=0¢ | MRy

SIGMAO RPC PROTOCOL

Map Reject

nilpage 32/64)

0 (28/60)

1000

0 (16/48)

0 ()

t=2)

v =0 ()

83

MR 2
MR ¢

MR o

oo responds with anap rejectmessage if the page is reserved (i.e., kernel space) or already
mapped to a different thread, or if memory is exhausted.

84 GENERIC BOOTING

7.7 Generic Booting [protocol]

Machine-specific boot procedures are described on pages 101 ff.

After booting, L4 initializes itself. It generates the basic address space-senjess and aroot serverwhich is
intended to boot the higher-level system.

00, 01 and theroot serverare user-level servers and not part of the pure kernel. The predefined ones can be replaced by
modifying the following table in the L4 image before starting L4. An empty area specifies that the corresponding server
should not be started. Note, that is a mandatory service. The kernel debudgiebugds also not part of the kernel and
can accordingly be replaced by modifying the table.

MemoryDesc MemDescPtr
~ Bootinfo ~ +B0/+160
~ +A0/+140
~ +90/+120
~ +80/+100
~ +70/ +EO
~ +60/ +CO
Kdebug.configl Kdebug.config0 MemorylInfo ~ +50/ +A0
root server.high root server.low root server.IP root server.SP +40/ +80
o1.high o1.low o1.IP 01.SP +30/ +60
09.high op.low oo.IP 00.SP +20/ +40
Kdebug.high Kdebug.low Kdebug.entry Kdebug.init +10/ +20
~ API Version ~/32) |K[230'4|L +0

+C/+18 +8/+10 +4/+8 +0

The addresses are offsets relative to the configuration page’s base address. The configuration page is located at a page
boundary and can be found by searching for the magiq:H4starting at the load address. The IP and SP values
however, are absolute addresses. The appropriate code must be loaded at these addresses before L4 is started.

IP Physical address of a server's initial instruction pointer (start).

SP Physical address of a server’s initial stack pointer (stack bottom).

Kdebug.init Physical address ¢&fdebugs initialization routine.

GENERIC BOOTING 85

Kdebug.entry Physical address &fdebuds exception handler entry point.

Kdebug.low Physical address of first byte of kernel debugger. Must be page aligned.

Kdebug.high Physical address of last byte of kernel debugger. Must be the last byte in page.

Kdebug.config Configuration fields which can be freely interpreted by the kernel debugger. The specific seman-
tics of these fields are provided with the specific kernel debuggers.

Bootinfo Prior to kernel initialization a boot loader can write an arbitrary value into this field. Post-
initialization code, e.g., a root server can later read the field. Its value is neither changed nor
interpreted by the kernel. This is the generic method for passing system information across
kernel initialization.

MemoryInfo
MemDescPtr(m/Sg) (16/32)

MemDescPtr Location of first memory descriptor (as an offset relative to the configuration page’s base ad-
dress). Subsequent memory descriptors are located directly following the first one. For memory
descriptors that specify overlapping memory regions, later descriptors take precedence over ear-
lier ones.

Initially equals the number of available memory descriptors in the configuration page. Before
starting L4 this number must be initialized to the number of inserted memory descriptors.

MemoryDesc
high /210 (22/54) "~ (10) +4./+8

low/2'0 (3354 vl gy |type (g +0

Memory descriptors should be initialized before starting L4. The kernel may after startup insert
additional memory descriptors or modify existing ones (e.g., for reserved kernel memory).

high Address of last byte in memory region. The ten least significant address bits are all hardwired
to 1.

Address of first byte in memory region. The ten least significant address bits are all hardwired
to 0.

low

Indicates whether memory descriptor refers to physical memory (0) or virtual memory
(v=1).

type Identifies the type of the memory descriptor.

Type | Description

0x0 | Undefined

0x1 | Conventional memory

0x2 | Reserved memory (i.e., reserved by kernel)

0x3 | Dedicated memory (i.e., memory not available to user)
0x4 | Shared memory (i.e., available to all users)

OxE | Defined by boot loader

OxF | Architecture dependent

t Identifies the precise type for boot loader specific or architecture dependent memory descriptors.

86 GENERIC BOOTING

type = 0z &
The type of the memory descriptor is dependent on the bootloadet. fighe specifies the exact
semantics. Refer to boot loader specification for more info.

type = Oz F
The type of the memory descriptor is architecture dependent. ¢ Tiedd specifies the exact
semantics. Refer to architecture specific part for more info (see page 115).

type # OXE, type # OXF
The type of the memory descriptor is solely defined bytthe field. The content of the field
is undefined.

Appendix A

|A-32 Interface

88 VIRTUAL REGISTERS

A.1 Virtual Registers [ia32]

Thread Control Registers (TCRS)

TCRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread menT
CoNTRoOL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r
UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must

not be accessed, even if they are physically accessible. ThreadWord0 and ThreadWord1 are free to be used by systems
software (e.g., IDL compilers). The kernel associates no semantics with these words.

~ (32) «—— UTCB address

ThreadWord Q 30, -16
ThreadWord X35y =20
VirtualSender/ActualSendes) —24
IntendedReceive;o) -28
XferTimeouts sz -32
ErrorCode32) -36
~ (16) cop flagss) preempt flagss) -40
ExceptionHandlefs) —44
Pager(sz) —48
UserDefinedHandlg;.) -52
ProcessorNgs.,) -56
MyGloballd (35, —60

MyLocalld = UTCB addresgs.) gs:[0]

The TCRMyLocalldis not part of the UTCB. On ia32 it is identical with the UTCB address and
can be loaded from memory location gs:[0].

VIRTUAL REGISTERS 89

Message Registers (MRS)

Memory-mapped MRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address
of the current thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread
via THREADCONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation
parameter when invokingHREADCONTROL and the UTCB address. The UTCB address of the current thread can be
loaded through a machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

MR o is always mapped to a general register. M&d MR, are mapped to general registers when reading a received
message; in all other cases, MRnd MR- are mapped to memory locations. MRg3 are always mapped to memory.

MR ESI
MR 1 (only for msg receive)
EBX
MR 5 (only for msg receive)
EBP
MR 1...63 [UTCB fle|dS]
MR63 (32) +252
MR 4 (32 +16
MR 3 (32) +12
MR (except for msg receiveys) +8
MR (except for msg receive),) «—— UTCB address + 4

Buffer Registers (BRS)

BRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread menT
CoNTRoOL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

90 VIRTUAL REGISTERS

BR 0...32 [UTCB fle'dS]

~ (32) «— UTCB address
BRo (32) -64
BR1 (32) -68
BR32 (32) -196

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory locat&diT&lB address .UTCB address- 3. The application can
use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory contents
within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

SYSTEMCALLS 91

A.2 Systemcalls [ia32

The system-calls which are invoked by the call instruction take the target of the calls the from system-call link fields in
the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNELINTERFACE [Slow Systemcall]

- EAX — Kernelinterface — EAX base address
— ECX ECX API Version
— EDX EDX API Flags

— ESI lock: nop Esl Kernel ID

— EDI EDI =

- EBX EBX =

— EBP EBP =

— ESP ESP =

EXCHANGEREGISTERS [Systemcall]

dest EAX | — Exchange Registers— | EAX result
control ECX ECX control
SP EDX EDX SP
IP Esi call ExchangeRegisters | Esi IP
FLAGS EDI EDI FLAGS
UserDefinedHandle EBx EBx UserDefinedHandle
pager EBP EBP pager
— ESP ESP =

“FLAGS” refers to the user-modifiable ia32 processor flags that are held in the EFLAGS register.

THREADCONTROL [Privileged Systemcall]

dest EAX — Thread Control — EAX result
Pager ECx ECX ~
Scheduler EDx EDX ~
SpaceSpecifier EsI call ThreadControl ESI ~
UtcbLocation EDI EDI ~
— EBX EBX ~
— EBP EBP ~
- ESP ESP =

SYSTEMCLOCK [Systemcall]

— EAX — SystemClock— eEax clock0...31
- ECX ECX ~

— EDX EDX clock 32...63
- ESI call SystemClock ESI ~

— EDI EDI ~

— EBX EBX =

— EBP EBP =

- ESP ESP =

92 SYSTEMCALLS

THREADSWITCH [Systemcall]

dest EAX — ThreadSwitch — EAX =
— ECX ECX =
— EDX EDX =
- ESI call ThreadSwitch ESI =
— EDI EDI =
— EBX EBX =
— EBP EBP =
— ESP ESP =

SCHEDULE [Systemcall]

dest EAX — Schedule— EAX result
prio ECX ECX ~
time control EDX EDX time control
processor control ESI call Schedule ESI ~
preemption control EDI EDI ~
- EBX EBX ~
— EBP EBP ~
- ESP ESP =
IPC [Systemcall]
to EAX — lpc — EAX from
Timeouts ECX ECX ~
FromSpecifier EDX EDX ~
MR, ESI call lpc ESI MRy
UTCB EDI EDI =
— EBX EBX MR,
— EBP EBP MR:
- ESP ESP =

LIPC [Systemcall]

to EAX — Lipc — EAX from
Timeouts ECX ECX ~
FromSpecifier EDX EDX ~
MRy ESI call Lipc ESI MR
UTCB EDI EDI =
— EBX EBX MR;
— EBP EBP MR;
— ESP ESP =

UNMAP [Systemcall]

control EAX — Unmap — EAX ~
— ECX ECX ~

— EDX EDX ~

MR, EsI callUnmap ESI MR

UTCB EDI EDI =
— EBX EBX ~

— EBP EBP ~

— ESP ESP =

SYSTEMCALLS

SPACECONTROL [Privileged Systemcall]

93

SpaceSpecifier Eax — Space Control— EAX result
control ECX ECX control

KernellnterfacePageArea EDX EDX ~
UtcbArea Esl call SpaceControl ESI ~

Redirector EDI EDI ~

- EBX EBX ~
— EBP EBP ~
— ESP ESP =

PROCESSORCONTROL [Privileged Systemcall]
ProcessorNo EAx | — Processor Control— | EAX result

InternalFrequency EcCX ECX ~
ExternalFrequency EDX EDX ~
voltage ESI call ProcessorControl | ESI ~

— EDI EDI ~

- EBX EBX ~

— EBP EBP ~

- ESP ESP =

MEMORYCONTROL [Privileged Systemcall]
control EAx | — Memory Control — | EAX result

attributey, ECX ECX ~

attribute; EDX EDX ~

MRy EsI call MemoryControl ESI ~

UTCB EDI EDI ~

attribute, EBX EBX ~

attribute; EBP EBP ~

- ESP ESP =

94 KERNEL FEATURES

A.3 Kernel Features (a3

The ia32 architecture supports the following kernel feature descriptors in the kernel interface page (see page 4).

String Feature

“smallspaces” Kernel has small address spaces enabled.

IO-PORTS 95

A.4 |O-Ports [ia3z

On ia32 processors, 10-ports are handled as fpages. |0 fpages can be mapped, granted, and unmapped like memory
fpages. Their minimal granularity is 1. An 10-fpage of sie has a25/-aligned base addregsi.e.p mod 2°'=0. An
fpage with base port addregssnd size2*’ is denoted as described below.

10 fpage(p, 2°')

D (16/48) s’ (6) s§=2@) |Orwz

IO-ports can only be mapped idempotently, i.e., physical pasteither mapped at 10 addressn the task’s 10 address
space, or it is not mapped at all.

Generic Programming Interface
#include <l4/space.h>

Fpage loFpage (Word BaseAddress, int FpageSize

Fpage loFpagelLog2 (Word BaseAddress, int Log2FpageSizé4)
Delivers an 10 fpage with the specified location and size.

96

SPACE CONTROL

A.5 Space Control [ia32

The SPACECONTROL system call has an architecture dependentrol parameter to specify various address space char-
acteristics. For ia32, theontrol parameter has the following semantics.

Input Parameter

control

small

S 0 (23) Small(g)

A value of 1 indicates the intention to change timall address space numbier the specified
address space. The small space number will remain unchangesd (f

If s = 1, sets the small address space number for the specified address space. Small address
space numbers from 1 to 255 are available. A value of 0 indicates a regular large address space.
An assigned small space number is effectiv@brCPUs in an SMP system.

The position pos) of the least significant bit afmallindicates the size of the small space by the
following formula: size = 2P°° x 4 MB. After removing the least significant bit, the remaining

bits of small indicate the location of the space within a 512 MB region using the following
formula: location = small x 2 MB. Setting the small space number fails if the specified region
overlaps with an already existing one.

The smallfield is ignored ifs = 0, or if the kernel does not support small spaces (see Kernel
Features, page 94).

Output Parameter

control

small

e 0 (23) small g)

Indicates if the change of small space number was effective (). Undefined ifs = 0 in the
input parameter.

The old value for the small space number. A value of O is possible even if the space has pre-
viously been put into a small address space. An implicit change to small space number O can
happen if a thread within the space accesses memory beyond the specified small space size.

Generic Programming Interface

#include <l4/space.h>

Word LargeSpace

Word SmallSpace (Word location, size

Delivers a small space number with the specifazhtionandsize(both in MB). It is assumed
thatsize = 2P * 4 for some value < 8.

CACHEABILITY HINTS 97

A.6 Cacheability Hints fiasz

String items can specify cacheability hints to the kernel (see page 54). For ia32, the cacheability hints have the following
semantics.

hh — 00 Use the processor’s default cacheability strategy. Typically, cache lines are allocated for data
read and written (assuming that the processor’s default strategy is write-back and write-allocate).

hh = 01 Allocate cache lines in the entire cache hierarchy for data read or written.

hh =10 Do not allocate new cache lines (entire cache hierarchy) for data read or written.

hh — 11 Allocate only new L1 cache line for data read or written. Do not allocate cache lines in lower
cache hierarchies.

Convenience Programming Interface

#include <l4/ipc.h>

CacheAllocationHintUseDefaultCacheLineAllocation
CacheAllocationHintAllocateNewCacheLines
CacheAllocationHintDoNotAllocateNewCacheLines

CacheAllocationHintAllocateOnlyNewL1CacheLines

98 MEMORY ATTRIBUTES

A.7 Memory Attributes [ia32]

The ia32 architecture in general supports the following memory attributes values.

attribute | value
Default
Uncacheable
Write Combining
Write Through
Write Protected
Write Back

~NOoOOINEFE O

Note that some attributes are only supported on certain processors. See the “IA-32 Intel Architecture Software Devel-
oper’'s Manual, Volume 3: System Programming Guide” for the semantics of the memory attributes and which processors
they are supported on.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word UncacheableMemory
Word WriteCombiningMemory
Word WriteThroughMemory
Word WriteProtectedMemory
Word WriteBackMemory

EXCEPTION MESSAGE FORMAT 99

A.8 Exception Message Format a3z

To Exception Handler

EAX (32 MR 12

ECX (32) MR 11

EDX (32) MR 10
EBX (32) MR
ESP (32 MR g
EBP (32 MR 7
ESl (32 MR
EDI (32) MR 5
ErrorCodesz) MR 4
ExceptionNo(3z) MR 3
EFLAGS (32 MR »
EIP (32 MR 4
—4/ =5 (12/49) Oy | Oy | t=0¢) [u=12(| MRo

#PF (page fault), #MC (machine check exception), and some #GP (general protection), #SS (stack segment fault), and
#NM (no math coprocessor) exceptions are handled by the kernel and therefore do not generate exception messages.

Note that executing an IN& instructions in 32-bit mode will always raise a #GP (general protection). The exception
handler may interpret the error codsi(+ 2, see processor manual) and emulate the #Nglccordingly.

100 PROCESSOR MIRRORING

A.9 Processor Mirroring lia32]

Segments

L4 uses a flat (unsegmented) memory model. There are only three segments avasiatdpace a read/write segment,
userspaceexeg an executable segment, antth address a read-only segment. Botlserspaceanduserspaceexec
cover (at least) the complete user-level address spliteh_addresscovers only enough memory to hold the UTCB
address.

The values of segment select@re undefined When a thread is created, its segment registers SS, DS, ES and FS
are initialized withuserspace GS with utcb.address and CS withuserspaceexec Whenever the kernel detects a
general protection exception and the segment registers are not loaded properly, it reloads them with the above mentioned
selectors. From the user’s point of view, the segment registers cannot be modified.

However, the binary representationusfer spaceanduserspaceexecmay change at any point during program exe-
cution. Never rely on any particular value.

Furthermore, the LSL (load segment limit) machine instruction may deliver wrong segment limits, even floating ones.
The result of this instruction is alwaysmdefined

Debug Registers

User-level debug registers exist per thread. DRO...3, DR6 and DR7 can be accessed by the machine instructions
mov n,DRx andmov DRx,r. However, only task-local breakpoints can be activated, i.e., bits GO. .. 3 in DR7 cannot be
set. Breakpoints operate per thread. Breakpoints are signaled as #DB exception (INT 1).

Note that user-level breakpoints are suspended when kernel breakpoints are set by the kernel debugger.

Model-Specific Registers

All privileged threads in the system have read and write access to all the Model-Specific Registers (MSRs) of the CPU.
Modification of some MSRs may lead to undefined system behavior. Any access to an MSR by an unprivileged thread
will raise an exception.

BOOTING 101

A.10 Booting (a3

PC-compatible Machines

L4 can be loaded at any 16-byte-aligned location beyond 0x1000 in physical memory. It can be started in real mode
or in 32-bit protected mode at address 0x100 or 0x1000 relative to its load address. The protected-mode conditions are
compliant to the Multiboot Standard Version 0.6.

Start Preconditions
Real Mode 32-bit Protected Mode
load base) L >0x1000, 16-byte aligned L > 0x1000
load offset X) X =0x100 orX =0x1000 | X =0x100 orX =0x1000
Interrupts disabled disabled
Gate A20 ~ open
EFLAGS 1=0 1=0, VM=0
CRO PE=0 PE=1, PG=0
(E)IP X L+ X
Cs L/16 0, 4GB, 32-bit exec
SS,DS,ES ~ 0, 4GB, read/write
EAX ~ 0x2BADB002
EBX ~ *p
(P +0) ~OR1
(P+4) n/a below 640 K mem in K
(P + 8) beyond 1M mem in K
all remaining registers & flags
(general, floating point, ~ ~
ESP, xDT, TR, CRx, DRX)

L4 relocates itself to 0x1000, enters protected mode if started in real mode, enables paging and initializes itself.

102 BOOTING

Appendix B

|A-64 Interface

104

B.1 Virtual Registers

Thread Control Registers (TCRS)

VIRTUAL REGISTERS

lia64]

TCRs are mapped to memory locations. They are implemented as part of the ia64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB will not change over the lifetime of the thread. (In fact,
the ia64 UTCB address is identical to the thread’s local ID.) Register ar.k6 always contains the UTCB address of the
current thread. UTCBs of other threads must not be accessed, even if they are physically accessible. ThreadWordO and
ThreadWordl are free to be used by systems software (e.g., IDL compilers). The kernel associates no semantics with

these words.

ThreadWord %4,

ThreadWord Qg4)

ErrorCodegy)

VirtualSender/ActualSendeg.)

IntendedReceivefs 4)

XferTimeouts)

~ (48) cop flagss preempt flagss,

ExceptionHandlefgy)

Pager<64)

UserDefinedHandlgsy)

ProcessorNgg.)

MyLocalld = UTCB addresggy)

MyGloballd (64)

Message Registers (MRS)

+352

+344

+72

+64

+56

+48

+40

+32

+24

+16

+—— UTCB address + 8

ar.k6

ar.k5

Memory-mapped MRs are implemented as part of the ia64-specific user-level thread control block (UTCB). The address
of the current thread’s UTCB will not change over the lifetime of the thread. (In fact, the ia64 UTCB address is identical

to the thread’s local ID.) Register ar.k6 always contains the UTCB address of the current thread. UTCBs of other threads
must not be accessed, even if they are physically accessible.

MR o...7 are mapped to the eight first output registers on the register stack. The exact location of the first eight message
registers therefore depends on the configuration oftineent frame marke(CFM). MR .. .¢3 are mapped to memory. It

is valid to configure less than eight output registers in the current register frame if a message to be transferred spans less
than eight message registers. The number of message registers must not exceed the number of output registers, however.

VIRTUAL REGISTERS

MRy..7 e

MR

MR 5

MR 4

MR 3

MR 2

MR ¢

MR

MR 8...63 [UTCB f|e|dS]

MR 63

MR g

MR g

Buffer Registers (BRs)

105

out?7

outé

outs

out4

out3

out2

outl

outO

+3888

+456

«—— UTCB address + 448

BRs are implemented as part of the ia64-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. (In fact, the ia64 UTCB address is identical to the thread's
local ID.) Register ar.k6 always contains the UTCB address of the current thread. UTCBs of other threads must not be

accessed, even if they are physically accessible.

BR 0...32 [UTCB fle'dS]

BR32

BR1

BRg

UTCB Memory With Undefined Semantics

+336

+88

«—— UTCB address + 80

The kernel will associate no semantics with memory located BEB address+t 384.. UTCB addresst 447. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

106 PAL AND SAL ACCESS

B.2 PAL and SAL Access [ias4]

The microkernel provides special system-calls for accessing Processor Abstraction Level (PAL) and System Abstraction
Layer (SAL) procedures. The location of the additional system-call links in the kernel interface page are as follows:

Location | System-call
Kernel Interface Page + 0x220 PAL_CALL
Kernel Interface Page + 0x228 SAL_CALL

Generic Programming Interface

System-Call Function:

#include <l4/arch.h>

Word PAL_Call (Word idx, al, a2, a3, Word& r1, r2, i3
Invoke the PAL procedure specified lx. al. ..a3 are the arguments to the PAL procedure.
rl...r3 are the return values. The system-call returns the status of the procedure invocation. See
the “Intel Itanium Architecture Software Developer’'s Manual, Volume 2: System Architecture”
for the possible values adlx, and the contents of arguments and return values.
As of now, no invocation of PAL procedures is allowed by any user-level thread.

Word SAL_Call (Word idx, al, a2, a3, a4, a5, a6, Word& r1, r2,)r3
Invoke the SAL procedure specified k. al...a6 are the arguments to the SAL procedure.
rl...r3 are the return values. The system-call returns the status of the procedure invocation. See
the “Itanium Processor Family System Abstraction Layer Specification” for possible values of
idx, and the contents of arguments and return values.
As of now, only the PCICONFIG.READ and PCICONFIG.WRITE procedure calls can be
invoked from a user-level thread.

Convenience Programming Interface

Derived Functions:

#include <l4/arch.h>

Word SAL_PCI_ConfigRead (Word address, size, Word& value
Read from the PCI configuration spaceadtiresswith the indicated word size (1, 2 or 4 bytes).
The read value is returned V@lue Return the status of the operation (0 if success).
The operation will only succeed if the address in the PCI configuration space is mapped readable
(see page 112)

Word SAL_PCI_ConfigWrite (Word address, size, value
Write valueto the PCI configuration space atldresswith the indicated word size (1, 2 or 4
bytes). Return the status of the operation (O if success).
The operation will only succeed if the address in the PCI configuration space is mapped writeable
(see page 112).

SYSTEMCALLS 107

B.3 Systemcalls fas4

The system-calls which are invoked by the br.call instruction take the target of the calls the from system-call link fields in
the kernel interface page (see page 2). Each system-call link valapecifies either an absolute address (if 1MB)

or an address relative to the kernel interface page’s base address (ifMB). An application may use instructions

other than br.call to invoke the system-calls, but must ensure that a valid return address resides in the b0 register. For the
IPpcand Lipc system-calls the application must additionally ensure that message registers are mapped into input registers
afterinvoking the system-call (i.e., the output registers if one were to use a br.call instruction).

The system-call definitions below only specify the contents of the general registers. Except f@RKREIKNTERFACE

Ipcand Lipc system-calls, the contents of the remaining user accessible registers closely resembles the I1A-64 software
calling conventions. More precisely, the register contents of these registers are ignored upon system-call entry, and the
contents after system-call exit are defined as follows:

Floating-point Registers: Application Registers:
fo...f1 fixed ar.fpsr special (see below)
f2...15 preserved ar.rnat preserved
f6...f15 scratch ar.unat preserved
f16...f127 preserved ar.pfs scratch
ar.bsp preserved
Predicate Registers: ar.bspstore preserved
pO fixed ar.rsc special (see below)
pl...p5 preserved ar.lc preserved
pé...pl5 scratch ar.ec preserved
pl6...p63 preserved ar.ccv scratch
ar.itc scratch
Branch Registers: ark0...k4 scratch
b0 system-call return address ar.k5 MyGloballd
bl...b5 preserved ar.k6 MyLocalld
b6...b7 scratch ar.k7 scratch

The ar.fpsr and ar.rsc registers are special. The second and third status fields of ar.fpsr, and the loadrs field of ar.rsc have
scratch semantics. The remaining fields have preserved semantics.

KERNELINTERFACE [Slow Systemcall]

- ri..r7 — Kernellnterface — rl...r7 =

- 8 r8 base address
- r9 API Version
— 10 { .mix r10 API Flags

- 1 (gp) break.m Oxlface ri1 Kernel ID

- rl2...r31 (qp) movl r0=0x0 ;; r12...r31 =

— in0...in95 } in0...in95 =

— locO0...loc95 locO...loc95 =

— outO...out95 out0...out95 =

All other registers remain unchanged. A qualifying predicgf®.can be used to conditionally execute theRVELIN-
TERFACE system-call.

108 SYSTEMCALLS

EXCHANGEREGISTERS [Systemcall]

- n — ExchangeRegisters— r1 =
- r2...r3 r2...r3 ~
- r4...r7 r4...r7 =
- 8.1l br.call b0 =ExchangeRegisterg rs...r11 ~
- rl2...r13 rl2...rl3 =
dest ri4 r14 result
contol r15 r15 control
SP 6 ri6 SP
P n7 r17 IP
FLAGS r1s8 r1s8 FLAGS
UserDefinedHandle ri9 r19 UserDefinedHandle
pager r20 r20 pager
- r21...r31 r21...r31 ~
— outO...out95 out0...out95 ~

THREADCONTROL [Privileged Systemcall]

- n — ThreadControl — r1 =
- r2...r3 r2...r3 ~
- r4.x7 r4...x7 =

- 8 br.call b0 =ThreadControl r8 result
- r9..r1 r9...ri1 ~
- rl2...r13 ri2...r13 =
dest ri4 r14 ~
SpaceSpecifier ri5 r15 ~
Scheduler ri6 r16 ~
Pager r7 r17 ~
UtcbLocation r18 ris ~
— rl9...r31 r19...r31 ~
— outO. ..out95 out0...out95 ~

SYSTEMCLOCK [Systemcall]

- n — SystemClock— rl =
- r2...r3 r2...r3 ~
- r4.x7 r4...x7 =

- 8 br.call b0 =SystemClock r8 clock
- ro..r1 r9...r11 ~
— rl2...r13 ri2...rl3 =
— rl4...r31 r14...r31 ~
— outO...out95 out0...out95 ~

THREADSWITCH [Systemcall]

- n — ThreadSwitch — r1 =
- r2...r3 r2...r3 ~
- r4...r7 r4...r7 =
— r8...r11 br.call b0 =ThreadSwitch r8...r11 ~
- rl2...r13 ri2...rl3 =
dest ri4 r14 ~
- rl5...r31 r15...r31 ~
- out0...out95 outO...out95 ~

SYSTEMCALLS 109

SCHEDULE [Systemcall]

- n — Schedule— r1 =
- r2...13 r2...13 ~
- 4.7 r4...r7 =
- 8 br.call b0 =Schedule r8 result
- 9 r9 time control
— r10...r11 r10...r11 ~
— rl2...r13 ri2...r13 =
dest r14 r14 ~
time control r15 r15 ~
processor control r16 r16 ~
prio 7 r17 ~
preemption control r18 r18 ~
— rl19...r31 r19...r31 ~
— outO. ..out95 out0...out95 ~~
IPC [Systemcall]
- n —lpc — ri =
— r2...18 r2...18 ~
- 9 r9 from
- r10...r11 br.call b0 =lpc r10...r11 ~
- rl2 ri2 =
- 13 r13 ~
to r14 ri4 ~
FromSpecifier r15 r15 ~
Timeouts r16 r16 ~
- ri7...r31 r17...r31 ~
MRy outo out0 MRo
MR outl outl MR,
MRy out2 out2 MRo
MR 3 out3 out3 MR3
MR4 out4 out4 MR 4
MRs5 outs outb MR5
MRgs outé out6 MRg
MR~ out7 out7 MR~
— out8...out95 out8...out95 ~

All remaining registers (including application registers) will have scratch semantics overdlgdtem-call. Upon entry
to the Ipc system-call, the register stack backing store must be able to contain the dirty partition of the register stack.

LIPC [Systemcall]

- n — Lipc — r1 =

— r2...18 r2...18 ~
-9 r9 from

- r10...r11 br.call b0 =Lipc r10...r11 ~

- rl2 ri2 =

- 13 r13 ~

to r14 ri4 ~

FromSpecifier r15 r15 ~

Timeouts r16 r16 ~

- ri7...r31 r17...r31 ~
MRy outo out0 MRo
MR outl outl MR,
MRs out2 out2 MRo
MR 3 out3 out3 MR3
MR4 out4 out4 MR 4
MRs5 outs outb MR5
MRg outé out6 MRg
MR~ out7 out7 MR~

— out8...out95 out8...out95 ~

110 SYSTEMCALLS

All remaining registers (including application registers) will have scratch semantics overrhesystem-call. Upon
entry to the Lpc system-call, the register stack backing store must be able to contain the dirty partition of the register
stack.

UNMAP [Systemcall]

- n — Unmap — r1 =

— r2...r3 r2...r3 ~

- 4.7 r4...r7 =

- r8..rl1 br.call b0 =Unmap r8...r11 ~

— rl2...r13 rl2...r13 =

control r14 r14 ~

— r15...r31 r15...r31 ~
MR out0 out0 MRg
MR outl outl MR,
MR out2 out2 MR>
MR3 out3 out3 MR35
MR 4 out4 out4 MR 4
MR5 outs out5 MR35
MRg outé out6 MRg
MR~7 out7 out7 MR~

— out8...out95 out8...out95 ~

SPACECONTROL [Privileged Systemcall]

- n — Space Control— rl =
- r2..13 r2...r3 ~
- r4..a7 r4...r7 =

- 8 br.call b0 =SpaceControl r8 result

- r9 control
- r10...r11 r10...r11 ~
— rl2...r13 r12...r13 =
SpaceSpecifier r14 ria ~
control ri5 ri5 ~
KernellnterfacePageAra r16 r16 ~
UtcbArea 7 r17 ~
Redirector r18 r18 ~
— rl19...r31 r19...r31 ~
— outO...out95 out0...out95 ~

PROCESSORCONTROL [Privileged Systemcall]

- n — Processor Control— r1 =
- r2...n3 r2...13 ~
- 4.7 r4...r7 =
- 8 br.call b0 =ProcessorControl | r8 result
— r9...r11 r9...rl1 ~
- r12...r13 r12...r13 =
ProcessorNo ri4 r14 ~
InternalFrequency ri5 r15 ~
ExternalFreqyency ri6 r16 ~
voltage r17 r17 ~
— rl8...r31 rl8...r31 ~
— outO. ..out95 out0...out95 ~~

SYSTEMCALLS 111

MEMORYCONTROL [Privileged Systemcall]

- n — Memory Control — r1 =
- r2...r3 r2...r3 ~
- r4.x7 r4...r7 =

- 8 br.call b0 =MemoryControl | r8 result
— r9...rl1 r9...rll ~
- rl2...r13 r12...rl3 =
control ri4 r14 ~
attributey r15 r15 ~
attribute; r16 r16 ~
attribute, 17 117 ~
attribute; r18 r18 ~
- rl9...r31 r19...r31 ~
MRy outo out0 ~
MR outl outl ~
MRs out2 out2 ~
MR3 out3 out3 ~
MRs out4 out4 ~
MRs5 outs outs ~
MRgs out6 outé ~
MR~7 out7 out? ~
— out8. ..out95 out8...out95 ~

PAL _CALL [Architecture Specific Systemcall]

- n — PAL Call — r1 =
- r2...r3 r2...r3 ~
- r4.x7 r4...r7 =
- 8 br.call b0 =PAL_Call r8 status
-9 r9 retl
- 1o r10 ret2
- ri1 ret3
- rl2...r13 ri2...r13 =
- rl4...r27 r14...r27 ~
idx r2s r28 ~
argl r29 r29 ~
arg2 r30 r30 ~
arg3 r31 r31 ~
— outO...out95 out0...out95 ~

SAL _CALL [Architecture Specific Systemcall]

- n — SAL Call — rl =
- r2...r3 r2...r3 ~
- 4.7 r4...r7 =
- 8 br.call b0 =SALCall r8 status
-9 r9 retl
— rlo r10 ret2
- ri1 ret3
- rl2...r13 r12...r13 =
— rl4...r31 rl4...r31 ~
idx outo out0 ~
argl outl outl ~
arg2 out2 out2 ~
arg3 out3 out3 ~
arg4 out4 outd ~
args outs out5 ~
argé outé out6 ~
- out7...out95 out7...out95 ~

112 PCI CONFIGURATION SPACE

B.4 PCI Configuration Space [ia64]

On ia64 processors, the PCI configuration space is handled as fpages. PCI Config fpages can be mapped, granted, and
unmapped like memory fpages. Their minimal granularity is 256 (i.e., one single device function). A PCI config fpage

of size2*’ has aQS/-aIigned base addregsi.e.p mod 2 =0. An fpage with base PCI configuration addrgsand size
2" is denoted as described below.

PCI config fpagép, 25')

P (48) s’ (6) s = 2(0) Orwaz

The execute bit of the PCI config fpage is ignored.

Generic Programming Interface
#include <l4/space.h>

Fpage PCIConfigFpage (Word BaseAddress, int FpageSize256)

Fpage PCIConfigFpageLog2 (Word BaseAddress, int Log2FpageSizé4)
Delivers a PCI config fpage with the specified location and size.

CACHEABILITY HINTS 113

B.5 Cacheability Hints [ias4]

String items can specify cacheability hints to the kernel (see page 54). For ia64, the cacheability hints have the following
semantics.

hh — 00 Use the default cacheability strategy. Temporal locality is assumed for all cache levels. That is,
cache lines are allocated on all levels for both data read and written.

hh — 01 No temporal locality is assumed for the first level cache. Temporal locality is assumed for all
lower cache levels. That is, cache lines are allocated on all cache levels below L1 for both data
read and written.

hh — 10 No temporal locality is assumed for the first and second level caches. Temporal locality is
assumed for all lower cache levels. That is, cache lines are allocated on all cache levels below
L2 for both data read and written.

hh — 11 Notemporal locality is assumed on any cache level. That is, cache lines are not allocated on any
cache level.

Note that support for cacheability hints is processor dependent. Refer to the processor specification to see what type of
locality hints the processor supports for load and store instructions.

Convenience Programming Interface

#include <l4/ipc.h>

CacheAllocationHintUseDefaultCacheLineAllocation
CacheAllocationHintCacheNonTemporallL1l
CacheAllocationHintCacheNonTemporallL2
CacheAllocationHintCacheNonTemporalAllLevels

114 MEMORY ATTRIBUTES

B.6 Memory Attributes (a4

The ia64 architecture in general supports the following memory attributes values.

attribute | value
Default

Write Back

Write Coalescing
Uncacheable
Uncacheable Exporte
NaT Page

OO UINEF O

Note that some attributes are only supported on certain processors. See the “Intel Itanium Architecture Software Devel-
oper’'s Manual, Volume 2: System Architecture” for the semantics of the memory attributes.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word WriteBackMemory

Word WriteCoalescingMemory
Word UncacheableMemory

Word UncacheableExportedMemory
Word NaTPageMemory

MEMORY DESCRIPTORS 115

B.7 Memory Descriptors [ias4]

The following memory descriptors (see page 5) are specific to the ia64 architecture.

t | type | Description
0x1 | OxF | ACPI Memory

Generic Programming Interface

#include <l4/kip.h>

Word ACPIMemoryType

116 EXCEPTION MESSAGE FORMAT

B.8 Exception Message Format [ias4]

To be defined.

Appendix C

PowerPC Interface

118 VIRTUAL REGISTERS

C.1 Virtual Registers [powerpc]

Thread Control Registers (TCRS)

TCRs are mapped to memory locations. They are implemented as part of the PowerPC-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread'’s local ID, and is thus immutable. The
UTCB address is provided in the general purpose register R2 at application start. The R2 register must contain the UTCB
address for every system call invocation. UTCB objects of the current thread can be accessed as any other memory object.
UTCBs of other threads must not be accessed, even if they are physically accessible. ThreadWordO and ThreadWord1
are free to be used by systems software (e.g., IDL compilers). The kernel associates no semantics with these words.

~ (32) «—— UTCB address
ThreadWord Q32 -16
ThreadWord 35, -20
VirtualSender/ActualSendes.) —24
IntendedReceivefs,) -28
XferTimeouts sz -32
ErrorCodesz) -36
~ (16) cop flagss) preempt flagss) -40
ExceptionHandIe(32) —44
Pagersz) —-48
UserDefinedHandlg;) -52
ProcessorNgs.) -56
MyGloballd (35, —-60
MyLocalld = UTCB addresgs o) R2

The TCRMyLocalldis not part of the UTCB. On PowerPC it is identical with the UTCB address
and can be loaded from register R2.

Message Registers (MRS)

Message registers MiRthrough MRy map to the processor’s general purpose register file. The remaining message
registers map to memory locations in the UTCB. MRstarts at byte offset 40 in the UTCB, and successive message
registers follow in memory.

VIRTUAL REGISTERS 119

MR 0...9 MR RO
MR s R10
MR 7 R9
MR R8
MR 5 R7
MR 4 R6
MR 3 R5
MR > R4
MR R3
MRo R14
MR 19...63 [UTCB fields]
MR63 (32) +252
MR 11 (32) +44
MR 10 (32) —— UTCB address + 40

Buffer Registers (BRS)

The buffer registers map to memory locations in the UTCB.(BRat byte offset -64 in the UTCB, BRat byte offset
-68, etc.

BR 0...32 [UTCB fleldS]

~ (32) «—— UTCB address
BRo (32 —64
BR 1 (32) —68
BR32 (32) -196

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory locatddTaB address .UTCB address 39. The application
can use this memory as thread local storage, e.g., forimplementing the L4 API. Note, however, that the memory contents
within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

120 SYSTEMCALLS

C.2 Systemcal Is [powerpc]

The PowerPC system calls are invoked by changing the location of the instruction pointer to the location of the system
call address, with the return address in the link-return (LR) register. The invocation may take place via any mechanism
which changes the instruction pointer location. The precise locations of the system calls are stored in the kernel interface
page (see page 2).

The locations of the system calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the kernel interface page.

The registers defined to survive across system-call invocations (unless otherwise noted) are: R1, R2, R30, R31, and
the floating point registers. All other registers contain return values, are undefined, or may be preserved according to
processor specific rules.

The R2 register must contain the UTCB pointer when invoking all system calls.

PowerPC uses one alternative system call invocation mechanism, foetheEINTERFACE System call. This system
call is invoked via the 'tlbia’ instruction, and most registers are preserved across the function call.

KERNELINTERFACE [Slow Systemcall]

UTCB R2 — Kernellnterface — R2 =
— R3 R3 KIP base address
— R4 R4 API Version
- R5 tibia Rs APl Flags
— R6 rR6 Kernel ID
- R7 R7 =
— R8 R =
- R9 RO =
— RI0 R10 =

For this system-call, all registers other than the output registers are preserved. The tlbia instruction encoding is
0x7c0002e4.

EXCHANGEREGISTERS [Systemcall]

UTCB R2 — Exchange Registers— R2 =
dest R3 R3 result
control R4 R4 control
SP Rs call ExchangeRegisters R5 SP
IP R6 R6 P
FLAGS R7 R7 FLAGS
UserDefinedHandle Rrs R8 UserDefinedHandle
pager R9 R9 pager
— RI10 R10 ~

“FLAGS” refers to the user-modifiable PowerPC processor flags that are held in the MSR register. See the PowerPC
Processor Mirroring section (page 127).

SYSTEMCALLS 121

THREADCONTROL [Privileged Systemcall]

UTCB R2 — Thread Control — R2 =

dest R3 R3 result
SpaceSpecifier R4 R4 ~
Scheduler Rs call ThreadControl RS~
Pager Reé R6 ~
UtcbLocation R7 R7 ~
— R8 R8 ~
— R9 RO ~
— RI10 R10 ~

SYSTEMCLOCK [Systemcall]

UTCB R2 — SystemClock— R2 =
- R3 R3 clock 32...63
- R4 R4 clock0...31
- RS call SystemClock R5 ~
- R6 R6 ~
- R7 R7T ~
- RS R§ ~
- R9 RO ~
- RI10 R10 ~

THREADSWITCH [Systemcall]

UTCB R2 — ThreadSwitch — R2 =
dest R3 R3 ~

— R4 R4 ~

- RS call ThreadSwitch RS~

- R6 R6 ~

- R7 R7 ~

— R8 R8 ~

- R9 RO ~

— R10 R10 ~

SCHEDULE [Systemcall]

UTCB R2 — Schedule— R2 =

dest R3 R3 result

time control R4 R4 time control

processor control R5 call Schedule R5 ~
prio Ré R6 ~
preemption control R7 R7T ~
- RS R8 ~
- R9 RO ~
— RI10 R10 ~

122

IPC [Systemcall]

SYSTEMCALLS

MRy RO — Ipc — RO MRy

- R1 RL =

UTCB R2 R2 =
MR; R3 call Ipc R3 MR,
MR, R4 R4 MR
MR3s R5 R5 MRj3
MR, R6 R6 MRy
MRs R7 R7 MR5
MRg R8 R8 MRg
MR, R9 R9 MR~
MRg R10 R10 MRsg

— Rl R11 ~

— RI12 R12 ~

— RI13 R13 ~
MRy R14 R14 MRy

to Ri15 R15 ~
FromSpecifier R16 R16 from

Timeouts R17 R17 ~

LIPC [Systemcall]

MRy RO — Lipc — RO MRy

- R1 RL =

UTCB R2 R2 =
MR; R3 call Lipc R3 MR;
MR: R4 R4 MR
MR3 R5 R5 MR3
MR 4 R6 R6 MR 4
MRs R7 R7 MR5
MRg R8 R8 MRg
MR~7 R9 R9 MR~
MRg R10 R10 MRg

— RI11 R11 ~

— RI12 R12 ~

— RI13 R13 ~
MRy Ri4 R14 MRy

to Ri15 R15 ~
FromSpecifier Ri16 R16 from

Timeouts R17 R17 ~

UNMAP [Systemcall]

MRy RO — Unmap — RO MRy

- R1 R1 =

UTCB R2 R2 =
MR: R3 callUnmap R3 MR
MR: R4 R4 MR
MR 3 R5 R5 MR3
MR 4 R6 R6 MR 4
MR35 R7 R7 MR5
MRg R8 R8 MRg
MR~ R9 R9 MR~
MRg R10 R10 MRsg

— Rl R11 ~

— RI12 R12 ~

— Ri13 R13 ~
MRy Ri14 R14 MRo

control Ri15 R15 ~

SYSTEMCALLS 123

SPACECONTROL [Privileged Systemcall]

UTCB R2 — Space Control— R2 =
SpaceSpecifier rR3 R3 result

control R4 R4 control
KernellnterfacePageArea R5 call SpaceControl R5 ~
UtcbArea Re6 R6 ~
Redirector R7 R7 ~
— R8 RS ~
- R9 RO~
- R10 R10 ~

PROCESSORCONTROL [Privileged Systemcall]

UTCB R2 — Processor Control— R2 =
processor no R3 R3 result
InternalFreq R4 R4 ~
ExternalFreq R5 call ProcessorControl R5 ~

voltage Reé R6 ~
- R7 R7 ~
- RS R8 ~
- R9 RO~
— RI10 R10 ~

MEMORYCONTROL [Privileged Systemcall]

MRy RO — Memory Control — RO ~

- R1 RL =

UTCB R2 R2 =
MR; R3 call MemoryControl R3 result

MR: R4 R4 ~

MR3 R5 RS~

MRs R6 R6 ~

MRs R7 R7 ~

MRs RS R8 ~

MR~7 R9 R9 ~

MRg R10 R10 ~

— R11 R11 ~

- RI12 R12 ~

— R13 R13 ~

MRy Ri4 R14 ~

control R15 R15 ~

attributey R16 R16 ~

attribute; R17 R17 ~

attribute, R18 R18 ~

attributes R19 R19 ~

124 MEMORY ATTRIBUTES

C.3 Memory Attributes [powerpc]

The PowerPC architecture supports the following memory/cache attribute values, to be used witivtheWZONTROL
system-call:

attribute value
Default

Write-through

Write-back
Caching-inhibited
Caching-enabled
Memory-global (coherent)
Memory-local (not coherent
Guarded

Speculative

O~NO A WNEFO

The default attributes enable write-back, caching, and speculation. Only if the kernel is compiled with support for multiple
processors will memory coherency be enabled by default.

The PowerPC architecture places a variety of restrictions on the usage of the memory/cache attributes. Some combina-
tions are meaningless (such as combining write-through with caching-inhibited), or are not permitted and will lead to
undefined behavior (for example, instruction fetching is incompatible with some combinations of attributes). The precise
semantics of the memory/cache access attributes are described in the “Programming Environments Manual For 32-Bit
Implementations of the PowerPC Architecture.”

Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed
from the cache.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word WriteThroughMemory
Word WriteBackMemory

Word CachinglnhibitedMemory
Word CachingEnabledMemory
Word GlobalMemory

Word LocalMemory

Word GuardedMemory

Word SpeculativeMemory

EXCEPTION MESSAGE FORMAT

C.4 Exception Message Format

System Call Trap

System Call Trap Message to Exception Handler

[powerpc]

FlagS(gz)

SP(32)

IP (32)

RO (32)

R10 (30)

R9 (32)

R8 (32)

R7 (32)

R6 (32)

R5 (32)

R4 (32)

R3 (32)

-5 (16/48)

0 ()

t:0(6)

u =12 (6)

125

MR 12
MR 11
MR 10
MR o
MR g
MR 7
MR ¢
MR 5
MR 4
MR 3
MR 2
MR

MR o

When user code executes the PowerPC 'sc’ instruction, the kernel delivers the system call trap message to the exception
handler. The kernel preserves only partial user state when handling an ’sc’ instruction. State is preserved similarly to
the SVR4 PowerPC ABI for function calls. The non-volatile registers are R1, R2, R13...R31, CR2, CR3, CR4, LR, and
FPSCR. The volatile registers are RO, R3...R12, CRO, CR1, CR5...CR7, CTR, and XER. Thread virtual registers may

also be clobbered.

Generic Traps

Generic Trap Message To Exception Handler

126 EXCEPTION MESSAGE FORMAT

LocallD (35, MR

ErrorCode) MR 5

ExceptionNo 32, MR 4

Flags sa) MR 3

SP(32) MR 2

IP (32) MR 1

5 (16/44) Oy | t=0@ | u=6@ | MRo

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. The kernel preserves all user state, including thread virtual
registers.

PROCESSOR MIRRORING 127

C.5 Processor Mirroring [powerpc]

The kernel will expose the following supervisor instructions to all user level programs via emulation: MFSPR for the
PVR, MFSPR and MTSPR for the DABR and other cpu-specific debug registers.

The kernel will emulate the MFSPR and MTSPR instructions for accessing cpu-specific performance monitor registers
on behalf of privileged tasks. The performance monitor registers are global, and not per-thread.

The EXCHANGEREGISTERSsystem-call accesses the flags of the processor. The flags map directly to the PowerPC MSR
register. The following bits may be read and modified by user applications: LE, BE, SE, FEO, and FE1. The kernel also
exposes additional cpu-specific bits.

128 BOOTING

C.6 Booting [powerpc]

Apple New World Compatible Machines

L4 must be loaded into memory at the physical location defined by the kernel's ELF header. It can be started with virtual
addressing enabled or disabled. Execution of L4 must begin at the entry point defined by the kernel’s ELF header.

When entering the kernel, the registers which support in-register file parameter passing, R3—R10 according to the SVR4
ABI, must be cleared for upwards compatibility, except as noted below. All other registers in the register file are undefined
at kernel entry.

The kernel may use OpenFirmware for debug console 1/0. To support OpenFirmware I/O, the OpenFirmware virtual
mode client call-back address must be passed to the kernel in register R5, and OpenFirmware must be prepared to handle
client call-backs using virtual addressing. In all other cases, register R5 must be zero.

The boot loader must copy the OpenFirmware device tree to memory, and record its physical location in a memory
descriptor of the kernel interface page. The copy of the device tree must include the package handles of the device tree
nodes

Appendix D

PowerP(C64 Interface

130 VIRTUAL REGISTERS

D.1 Virtual Registers [powerpcs4]

Thread Control Registers (TCRS)

TCRs are mapped to memory locations. They are implemented as part of the ppc64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable.
Setting the UTCB address of an active thread ViRREADCONTROL is similar to deletion and re-creation. There is a

fixed correlation between the UtcbLocation parameter when invokimgeERDCONTROL and the UTCB address. The

UTCB address is provided in the abi thread regisie at application start. UTCB objects of the current thread can

then be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible. ThreadWord0 and ThreadWord1 are free to be used by systems software (e.g., IDL compilers). The kernel
associates no semantics with these words.

ThreadWord kg4 + 88
ThreadWord Q4 + 80
~ (48) cop flagss) preempt flagss) +72
ProcessorNgg 4 +64
VirtualSender/ActualSendes) +56
IntendedReceivefs 4 +48
ErrorCodegy) +40
XferTimeouts g4 +32
UserDefinedHandlgg.) +24
ExceptionHandlefs4) +16
Pager(s4) +8
MyGloballd (g4) «—— UTCB address
MyLocalld = UTCB addresgs) rl3

The TCRMyLocalldis not part of the UTCB. On PowerPC64 it is identical with the UTCB
address and can be loaded from regisi&

Message Registers (MRS)

Message registers MiRthrough MRy map to local registers in the processor’s general purpose register file for IPC and
LIPC calls, otherwise they are located in the UTCB. The remaining message registers map to memory locations in the
UTCB. MR, starts at byte offset 512 in the UTCB, and successive message registers follow in memory.

VIRTUAL REGISTERS

MR, o .

MR g

MR 7

MR g

MR 5

MR 4

MR 3

MR 2

MR

MR o

MR ¢.. .63 [UTCB fields]

MR 63 (64)

MRo (64)

Buffer Registers (BRS)

131

r23

r22

r21

r20

ri9

ri8

riz

rl6

rls5

ri4

+1016

«—— UTCB address + 512

The buffer registers map to memory locations in the UTCB.,BRat byte offset 248 in the UTCB, BRat byte offset

256, etc.

BR 0...32 [UTCB fIE|dS]

BR32 (64)

BR1 (64)

BRo (64)

UTCB Memory With Undefined Semantics

+504

+256

«—— UTCB address + 248

The kernel will associate no semantics with memory locatediTaZB address 80...UTCB address 247. The appli-
cation can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory
contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

132 SYSTEMCALLS

D.2 System calls [powerpc64]

The system-calls which are invoked by thetrl or instruction take the target of the calls from the system call link fields

in the kernel interface page (see page 2). Each system-call link value specifies an address relative to the kernel interface
page’s base address. One may invoke the system calls with any instruction that branches to the appropriate target, as long
as the return-address is containedrin

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

The system call definitions below only specify the contexts of the general purpose registers. Except fer i (I -
TERFACE system-call, the contents of user accessible state registers are assumed to be scratched. The floating-point
registers are assumed to be preserved accross system calls.

KERNELINTERFACE [Slow Systemcall]

- 10...12 — Kernellnterface — 0...r2 =

- 3 r3 KIP base address
- 4 r4 API Version

- 5 tibia r5 API Flags

- 16 6 Kernel ID

- 17...131 7...131 =

- Ir =

- ctr ctr =

- cr cr =

- xer xer =

For this system-call, all registers other than the output registers are preserved.

EXCHANGEREGISTERS [Systemcall]

- 10 — Exchange Registers— r0 ~
- n r1 =
- r2 =
dest 3 betrl r3 result
control 4 r4 control
SP 5 5 SP
IP 6 6 IP
FLAGS 7 r7 FLAGS
UserDefinedHandle r8 r8 UserDefinedHandle
pager r9 r9 pager
isLocal ri0 r10 isLocal
- rll,rl2 rl1, ri2 ~
UTCB r13 ri3 UTCB
— rl4...r29 rl4...r29 ~
— 130,131 r30, r31 =
- Ir ~
ExchangeRegisters ctr ctr ~
- cr cr ~
- xer xer ~

“FLAGS" refers to the user-modifiable powerpc64 processor flags that are heldnsthegister.

SYSTEMCALLS 133
THREADCONTROL [Privileged Systemcall]
- 10 — Thread Control — r0 ~
- n r1 =
- r r2 =
dest 3 bctrl r3 result
space r4 r4 ~
scheduler 5 5 ~
pager 6 16 ~
UtcbLocation r7 r7 ~
- r18...r12 18...112 ~
UTCB r13 r13 UTCB
— rla...r29 rl4...r29 ~
— r30,r31 r30, r31 =
- Ir ~
ThreadControl ctr ctr ~
- cr cr ~
- xer xer ~
SYSTEMCLOCK [Systemcall]
- 10 — SystemClock— r0 ~
- n r1 =
- 2 r2 =
- 3 bctrl r3 clock
— rd...r12 r4...rl2 ~
UTCB r13 r13 UTCB
— rl4...r29 rl4...r29 ~
— 130,131 r30, r31 =
- I Ir ~
SystemClock ctr ctr ~
- cr cr ~
- xer xer ~
THREADSWITCH [Systemcall]
- 10 — ThreadSwitch — r0 ~
— rl rl =
- r r2 =
dest 3 bctrl r3 ~
- r4..r12 r4...r12 ~
UTCB n3 r13 UTCB
— rl4...r29 r14...129 ~
— r30,r31 r30, r31

ThreadSwitch

Ir
ctr
cr
xer

ctr
cr
xer

22l

134 SYSTEMCALLS

SCHEDULE [Systemcall]

- 10 — Schedule— r0 ~
- n r1 =
- r2 r2 =
dest 13 bctrl r3 result
time control r4 r4 time control
processor control r5 5 ~
priority r6 r6 ~
preemption control r7 r7 ~
— 18...r12 r8...r12 ~
UTCB r13 r13 UTCB
— rl4...r29 rl4...r29 ~
— 130,131 r30, r31 =
- Ir ~
Schedule ctr ctr ~
- cr cr ~
- xer xer ~
IPC [Systemcall]
— 10 — Ipc — r0 ~
- n r1 =
- r2 =
to 3 bctrl 3 from
FromSpecifier r4 r4 ~
Timeouts 5 r5 ~
— r6...r12 6...r12 ~
UTCB r13 ri3 UTCB
MRy r14 ri4 MR
MR; ri5 r15 MR,
MR rlé rlé MRo
MR3 7 r17 MR3
MR 4 rl8 rl8 MR 4
MRs5 r19 r19 MR5
MRg r20 r20 MRg
MR, r21 r21 MR~
MRg r22 r22 MRg
MRg r23 r23 MRy
— r24...r29 r24...129 ~
— r30,r31 r30, r31 =
- Ir ~
Ipc ctr ctr ~
- cr cr ~
~

— xer xer

SYSTEMCALLS 135

LIPC [Systemcall]

- 10 — Lipc — 10 ~
- n r1 =
— r2 r2 =
to 3 bctrl r3 from
FromSpecifier r4 r4 ~
Timeouts r5 5 ~
— 6...r12 r6...r12 ~
UTCB r13 r13 UTCB
MRy r14 r14 MRo
MR; r15 r15 MR,
MR rlé rl6é MR 2
MR3 7 r17 MR3
MR 4 rl8 rl8 MR 4
MR 5 r19 r19 MR5
MRg r20 r20 MRg
MR7 r21 r21 MR~
MRg r22 r22 MRg
MRo r23 r23 MRy
— r24...r29 r24...r29 ~
— 130,131 r30, r31 =
- Ir Ir ~
Lipc ctr ctr ~
— cr cr ~
— xer xer ~
UNMAP [Systemcall]
- 10 — Unmap — r0 ~
- n r1 =
- r2 r2 =
control 3 bctrl r3 ~
— r4...rl2 r4...rl2 ~
UTCB r13 r13 UTCB
— rl4...r29 rl4...r29 ~
— 130,131 r30, r31 =
- Ir ~
Unmap ctr ctr ~
- cr cr ~
— xer xer and
SPACECONTROL [Privileged Systemcall]
- 10 — Space Control— ro ~
- rl rl =
- r2 =
SpaceSpecifier r3 betrl r3 result
control r4 r4 control
KernellnterfacePageArea rs5 r5 ~
UtcbArea r6 16 ~
Redirector r7 r7 ~
— r8...r12 r8...r12 ~
UTCB n3 ri3 UuTCB
— rl4...r29 rl4...r29 ~
— r30,r31 r30, r31 =
- Ir ~
SpaceControl ctr ctr ~
- cr cr ~
- xer xer ~

136 SYSTEMCALLS

PROCESSORCONTROL [Privileged Systemcall]

- 10 — Processor Control— r0 ~
- rl rl =
- r2 =
ProcessorNo r3 betrl r3 result
InternalFreq r4 r4 ~
ExternalFreq r5 5 ~
voltage r6 r6 ~
— r7...r12 r7...rl2 ~
UTCB r13 r13 UTCB
- rla...r29 rl4...r29 ~
— 130,r31 r30, r31 =
- I Ir ~
ProcessorControl ctr ctr ~
- cr cr ~
- xer xer ~
MEMORYCONTROL [Privileged Systemcall]
- 10 — Memory Control — r0 ~
- n r1 =
- r2 r2 =
control 3 bctrl r3 result
attributey r4 r4 ~
attribute;, 5 r5 ~
attribute, 16 16 ~
attributes 7 r7 ~
- r8...r12 r8...rl2 ~
UTCB n3 r13 UTCB
- rl4...r29 rl4...r29 ~
— 130,r31 r30, r31 =
— I Ir ~
MemoryControl ctr ctr ~
- cr cr ~
- xer xer ~

MEMORY ATTRIBUTES 137

D.3 Memory Attributes [powerpce]

The powerpc64 architecture supports the following memory/cache attribute values, to be used witMbaWION-
TROL system-call:

attribute | value
Default 0
Uncached| 1
Coherent 2

The default attributes depend on the platform and not all modes are defined for all processors.

138

D.4 Exception Message Format [powerpc64]

System Call Trap

System Call Trap Message to Exception Handler

EXCEPTION MESSAGE FORMAT

Flags ea)

SP (64)

IP (64)

(0] (64)

r10 (64)

r9 (64)

r8 (64)

r7 (64)

r6 (64)

5 (64)

r4 (64)

r3 (64)

5 (49 0)

t=0)

u =12 (6)

MR 12
MR 11
MR 10
MR o
MR g
MR 7
MR 6
MR 5
MR 4
MR 3
MR
MR

MR o

When user code executes the Powerde@struction, the kernel delivers the system call trap message to the exception
handler. The kernel preserves only partial user state when handéionmstruction. State is preserved similarly for the

inclusive set of saved registers according the the 64-bit PowerPC elf ABI for function calls.

The non-volatile registers aret, r2,r13...r31, CR2...CR4

The volatile registers ared, r3...r12, LR, CTR, XER, CRO, CR1, CR5...CR7

Thread virtual registers may also be clobbered.

Generic Traps

Generic Trap Message To Exception Handler

EXCEPTION MESSAGE FORMAT 139

ErrorAddressg) MR 7

LocallD (g4, MR 6

ErrorCode gy MR 5
ExceptionNogy4) MR 4

Flags s MR 3

SP (64) MR 2

IP (64) MR

-5 (44 Ow | t=0@ |u=6/T@ | MRo

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. Exceptions that provide an error addreSsargalthess

register and specify 7 Untyped words, otherwise only 6 Untyped words will be sent. The kernel preserves all user state,
including thread virtual registers.

For some exceptions, The following is a table of values for the GenericBxagptionNo

Exception ExceptionNo| ErrorCode Delivered ErrorAddress
System Reset 0x100 - No -
Machine Check 0x200 - No -
DSl 0x300 DSISR If not paging related Yes
ISI 0x400 - If not paging related No
Interrupt 0x500 - No No
Alignment 0x600 DSISR Yes Yes
Program 0x700 - Yes Yes
FPU Unavailable 0x800 - No -
Decrementer 0x900 - No -
System Call 0xc00 - No -
Trace 0xd00 - If kdb not using No
FPU Assist 0xe00 - Yes No
Performance 0xf00 - Yes No
Breakpoint 0x1300 - Yes No
Soft Patch 0x1500 - Yes No
Maintenance 0x1600 - Yes No
Instrumentation 0x2000 - Yes No

Note, not all of these exceptions will be delivered via exception IPC. Some will be handled by the kernel. Delivered
exceptions are indicated in the last column of the table above.

140 BOOTING

D.5 Booti ng [powerpc64]

IBM OpenFirmware Machines

L4 must be loaded into memory at the physical location defined by the kernel's ELF header. It can be started with virtual
addressing enabled or disabled. Execution of L4 must begin at the entry point defined by the kernel’s ELF header.

When entering the kernel, the registers which support in-register file parameter passing, R3—R10 according to the Open-
Power ABI, must be cleared for upwards compatibility, except as noted below. All other registers in the register file are
undefined at kernel entry.

The kernel may use OpenFirmware for debug console 1/0. To support OpenFirmware I/O, the OpenFirmware virtual
mode client call-back address must be passed to the kernel in register R5, and OpenFirmware must be prepared to handle
client call-backs using virtual addressing???. In all other cases, register R5 must be zero.

The boot loader must copy the OpenFirmware device tree to memory, and record its physical location in a memory
descriptor of the kernel interface page. The copy of the device tree must include the package handles of the device tree
nodes

Appendix E

Alpha Interface

142 VIRTUAL REGISTERS

E.1 Virtual Registers [aipha]

Thread Control Registers (TCRS)

TCRs are mapped to memory locations. They are implemented as part of the Alpha-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable.
The UTCB (and hence local ID) is available through the rdunique PAL call. UTCB objects of the current thread can
be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible.

ThreadWord) +88
ThreadWordQ.) +80
VirtualSender/ActualSendeg 4 +72
IntendedReceive 4 +64
ErrorCodegy) +56
XferTimeoutss4) +48
~ (48) cop flagss) preempt flagss, +40
ExceptionHandlefs) +32
Pagers4) +24
UserDefinedHandlgs 4 +16
ProcessorNgg) +8
MyGloballd (64) — UTCB
MyLocalld = UTCB addresge.) call_pal rdunique

The TCRMyLocalldis not part of the UTCB. On Alpha it is identical with the UTCB address
and can be found using the rdunique PAL call.

Message Registers (MRS)

Message registers MRthrough MRg map to the processor’s general purpose register file for IPC and LIPC calls. The
remaining message registers map to memory locations in the UTCB, 8fftts at byte offset 200 in the UTCB, and
successive message registers follow in memory.

For the other system calls, message registers map to memory locations in the UTCB, wjtetddtng at byte offset
128.

VIRTUAL REGISTERS 143

MR 0...8 VIR . -
MR 7 s4
MR g s3
MR 5 s2
MR 4 sl
MR 3 s0
MR 2 t7
MRy t6
MR o s6
MR 9...63 [UTCB fle|dS]
MR (64) +632
MR 12 (64) +224
MR 11 (64) +216
MR 10 (64) +208
MR (64) < UTCB address- 200

Buffer Registers (BRS)

The buffer registers map to memory locations in the UTCB.oBRat byte offset 640 in the UTCB, BRat byte offset
648, etc.

BR 0...32 [UTCB fle'dS]

BR 32 (64) +896
BR1 (64) +648
BRo (64) «— UTCB address + 640

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located ®EB addresst 128.. UTCB address+ 199. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

144 SYSTEMCALLS

E.2 Systemcalls [apha]

The system-calls invoked via the ’jsr’ instruction are located in the kernel's area of the virtual address space. Their precise
locations are stored in the kernel interface page (see page 2). One may invoke the system calls with any instruction that
branches to the appropriate target, as long as the return-address register (RA) contains the correct return address.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the kip.

Unless explicitly stated, the kernel follows the Alpha calling convention for the system call interface. This means that
arguments are passed in the a0 — a5 registers and the result is placed in the vO register. All ‘s’ registers are preserved and
all 't registers are undefined. The sp and ra registers are also preserved.

All floating point registers are preserved across a system call.
All other registers contain return values, are undefined, or may be preserved according to processor specific rules.

KERNELINTERFACE [Slow Systemcall]

- 0 — Kernellnterface — vo KIP base address
0x4c34754b4b495034 a0 a0 API Version

- al al APl Flags

- a2 call_pal cserve a2 Kernel ID

— a3 a3

- a4 a4~

— a5 ab

EXCHANGEREGISTERS [Systemcall]

- V0 — Exchange Registers— vo result
dest a0 a0 control
control a1 al SP
SP a2 jsr ra,ExchangeRegisters a2 |IP
IP a3 a3 FLAGS
FLAGS a4 a4 UserDefinedHandle
UserDefinedHandle as a5 pager
pager t1 L o~

THREADCONTROL [Privileged Systemcall]

- V0 — Thread Control — vo result
dest a0 a0~
SpaceSpecifier a1 al ~
Scheduler a2 jsr ra, ThreadControl a2 o~
Pager a3 a3~
UtcbLocation a4 ad ~

— ab a5

SYSTEMCALLS

SYSTEMCLOCK

[Systemcall]

vO
a0
al
a2
a3
a4
a5

— SystemClock—

jsr ra, SystemClock

VO
a0
al
a2
a3
a4
a5

Note that the SystemClock system call is currently UNIMPLEMENTED on Alpha.

145

THREADSWITCH

[Systemcall]

- V0 — ThreadSwitch — VO~
dest a0 a0~
- a1l al ~
- a2 jsr ra, ThreadSwitch a2 o~
- a3 a3~
- a4 a4~
- a5 a5~
SCHEDULE [Systemcall]
- 0 — Schedule— vo result
dest a0 a0 TimeControl
TimeControl a1 al ~
ProcessorControl a2 jsrra,Schedule a2 o~
Priority a3 a3~
PreemptionControl a4 a4~
— a5 as ~
IPC [Systemcall]
— 0 —Ipc — vo result
dest a0 a0~
source ail al ~
timeout a2 jsrra,lpc a2 o~
— a3 a3~
— a4 a4 ~
- a5 a5~
MR s6 s6 MR
MR; 6 6 MRy
MR t7 t7 MR-
MR 3 sO sO MR3
MR 4 sl sl MR 4
MRs5 s2 s2 MRs5
MRg s3 s3 MRg
MR~ s4 s4 MR~
MRg s5 s5 MRg

146 SYSTEMCALLS

LIPC [Systemcall]

- 0 — Lipc — vo result

dest a0 a0~

source ail al ~

timeout a2 jsr ra,Lipc a2~

— a3 a3 ~

— a4 ad

— a5 ab ~
MR s6 s6 MR
MR t6 t6 MR
MR t7 t7 MR-
MR3 s0 s0 MR3
MR 4 sl sl MR 4
MR35 s2 s2 MR35
MRg s3 s3 MRg
MR~ s4 s4 MR~
MRg s5 s5 MRg

Note that on Alpha LIPC is not implemented: use IPC instead.

UNMAP [Systemcall]

- V0 — Unmap — VO~
control a0 a0~
— al al ~
- a2 jsrra,Unmap a2 o~
— a3 a3 ~
— a4 a4~
— a5 as ~

SPACECONTROL [Privileged Systemcall]

- V0 — Space Control— vo result
SpaceSpecifier a0 a0 control
control a1 al ~
KIPArea a2 jsr ra, SpaceControl a2 o~
UTCBArea a3 a3 ~
Redirector a4 ad ~
- a5 a5~

PROCESSORCONTROL [Privileged Systemcall]

- V0 — Processor Control— vo result
ProcessorNo a0 a0~
control a1 al ~
InternalFreq. a2 jsr ra,ProcessorControl a2 o~
ExternalFreq. a3 a3~
voltage a4 a4~
— a5 a5 ~

Note that on Alpha the ProcessorControl system call is not implemented.

SYSTEMCALLS 147

MEMORYCONTROL [Privileged Systemcall]

- 0 — Memory Control — vo result
control a0 a0~
attribute0 a1 al ~
attributel a2 jsr ra,MemoryControl a2 o~
attribute2 a3 a3~
attribute3 a4 a4~
— a5 a5 ~

Note that on Alpha the MemoryControl system call is not implemented: the memory attributes for a page are defined by
the system, and cannot be controlled by the application (or kernel).

148 BOOTING

E.3 Booting Japhal

All SRM based machines

L4 must be loaded at the virtual address defined in the ELF header (corresponding to the physical region of the virtual
address space). The kernel also requires the bootloader to initialise some kernel data structures, so the supplied bootloader
is recommended.

The preferred method for booting the kernel is via BootP. Consult the SRM documentation for instructions on setting
up SRM to boot a file from a remote host.

Appendix F

MIPS-64 Interface

150 VIRTUAL REGISTERS

F.1 Virtual Registers [mips-64]

Thread Control Registers (TCRS)

TCRs are mapped to memory locations. They are implemented as part of the mips64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable. The
UTCB (and hence local ID) is available in th@ register. UTCB objects of the current thread can be accessed as any
other memory object. UTCBs of other threads must not be accessed, even if they are physically accessible.

ThreadWord k¢4 +88
ThreadWord Q4 +80
VirtualSender/ActualSendeg.) +72
IntendedReceivefs.) +64
ErrorCodegs) +56
XferTimeouts gy +48
~ (48) cop flagss) preempt flagss) +40
ExceptionHandles) +32
Pager(g,) +24
UserDefinedHandlgs 4 +16
ProcessorNgg) +8
MyGloballd (64) «—— UTCB address
MyLocalld = UTCB addresgg) UTCB syscall

The TCRMyLocalldis not part of the UTCB. On mips64 it is identical with the UTCB address
and is always in the kO register. The register should be treated as read-only. If modified, the
effects are undefined.

Message Registers (MRs)

Message registers MiRthrough MRg map to the processor’s general purpose register file for IPC and LIPC calls. The
remaining message registers map to memory locations in the UTCB, 8t#tts at byte offset 200 in the UTCB, and
successive message registers follow in memory.

The first nine message registers are mapped to the registers v1, s0O to 87 sMite mapped to memory in the UTCB.

VIRTUAL REGISTERS

MRy...s
MRo (64)

MR 1 (64)

MR 2 (g4)

MR 3 (64)

MR 4 (64)

MR 5 (64)

MR (64)

MR 7 (64)

MRs (64)

MR 0...63 [UTCB fle|dS]

MR 63 (64)

MR g (64)

Buffer Registers (BRs)

151

vl

s0O

sl

s2

s3

s4

s5

s6

s7

+632

«—— UTCB address + 200

The buffer registers map to memory locations in the UTCB .(BRat byte offset 640 in the UTCB, BRat byte offset

648, etc.

BR 0...32 [UTCB fle'dS]

BR32 (64)

BR1 (64)

BRo (64)

UTCB Memory With Undefined Semantics

+896

+648

«—— UTCB address + 640

The kernel will associate no semantics with memory located BEB address+t 128.. UTCB addresst 191. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

152 SYSTEMCALLS

F.2 Systemcalls wips-64]

The system-calls invoked via thi@ instruction are located in the kernel’s area of the virtual address space. Their precise
locations are stored in the kernel interface page (see page 2). One may invoke the system calls with any instruction that
branches to the appropriate target, as long as the return-address fRgistentains the correct return address.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

In general, the kernel follows the MIPS ABI64 calling convention for the system call boundary. This means that ar-
guments are passed in the a0 — a7 registers, and the result is placed in the vO register. All floating point registers are
preserved across a system call. All other registers contain return values, are undefined, or may be preserved according to
processor specific rules.

KERNELINTERFACE [Slow Systemcall]

Ox1FACECA1114E1F64 at — Kernelinterface — at =
- vOoVv1 vO,v1 =
— a0...a3 a0...a3 =
- 10 opcode OX07FFFFFF a4 KIP base address
- u a5 API Version
- a6 API Flags
- 3 a7 Kernel ID
- t4...t7 t4...t7 =
— s0...s7 s0...s7 =
— 18,19 18, t9 =
— gp,sp gp. sp =
— S8 s8 =
- ra ra =

For this system-call, all registers other than the output registers are preserved.

EXCHANGEREGISTERS [Systemcall]

- at — Exchange Registers— at ~
- V0) result
- v vl ~
dest a0 jal ExchangeRegisters a0 control
control a1 al SP
SP a2 a2 IP
IP a3 a3 FLAGS
FLAGS 10 a4 pager
UserDefinedHandle t1 a5 UserDefinedHandle
pager t a6 ~
- 83 a7
- t4..t7 .17~
— s0...s7 s0...s7 ~
- 8,19 18,19 ~
- op ap ~
- sp sp =
— S8 s8 =
- ra ra ~

SYSTEMCALLS

THREADCONTROL [Privileged Systemcall]

153

- at — Thread Control — at ~
- 0 vO result
- vl vl ~
dest a0 jal ThreadControl a0 ~
space a1l al ~
scheduler a2 a2 ~
pager a3 a3 ~
UTCB 0 ad ~
- tl...t3 a5...a7 ~
- t4...17 th. 7~
— s0...s7 s0...s7 ~
- 18,19 t8, 19 ~
- op gp ~
- sp sp =
— s8 s8 =
- ra ra ~
SYSTEMCLOCK [Systemcall]
- at — SystemClock— at ~
- V0 VO clock
- vl vl ~
— a0...a3 jal SystemClock a0...a3 ~
— 10...t3 a4...a7 ~
- t4...17 th.. 17~
— s0...s7 sO...s7 ~
— 18,19 18, t9 ~
- o gp ~
- sp sp =
— s8 s8 =
- ra ra ~
THREADSWITCH [Systemcall]
- at — ThreadSwitch — at ~
— vO,vl v0, v1 ~
dest a0 a0 ~
— al..a3 jal ThreadSwitch al...a3 ~
- 10...13 ad...a7 ~
- t4..17 th. 47~
— s0...s7 s0...s7 ~
- 18,19 t8, t9 ~
- o gp ~
- sp sp =
— s8 s8 =
- ra ra ~

154

SYSTEMCALLS

SCHEDULE [Systemcall]
- at — Schedule— at ~
- V0 vO result
- vl vl ~
dest a0 jal Schedule a0 time control
time control a1 al ~
processor control a2 a2 ~
priority a3 a3 ~
preemption control to a4 ~
— t1...t3 a5...a7 ~
- t4..t7 4. t7 ~
— s0...s87 s0...s7 ~
— 18,19 t8, t9 ~
- gp gp ~
- sp sp =
— S8 s8 =
- ra ra ~
IPC [Systemcall]
- at —Ipc — at ~
- V0 VO result
MR0) w1 vl MR (0)

to a0 jal Ipc a0 ~
FromSpecifier a1 al ~
Timeouts a2 a2 ~
— a3 a3 ~
— 10...t3 ad...a7 -~
- t4..t7 th.. .7~

MR sO sO MR

MR sl sl MR

MR 3 s2 s2 MR3

MR 4 s3 s3 MR 4

MRs s4 s4 MR35

MRg s5 s5 MRg

MR~ s6 s6 MR~

MRg s7 s7 MRg
— 18,19 t8, t9 ~
- gp gp ~
- sp sp =
— S8 s8 =

SYSTEMCALLS

LIPC [Systemcall]

155

- at — Lipc — at ~
- 0 VO result
- vl vl ~
to a0 jal Lipc a0 ~
FromSpecifier a1 al ~
Timeouts a2 a2 ~
— a3 a3 ~
- 10...t3 a4...al ~
- 4.7 th. 7~
MR sO sO MR
MR sl sl MR
MR s2 s2 MR»
MR 3 s3 s3 MR 3
MRy s4 s4 MR 4
MR5 s5 s5 MR
MRg s6 s6 MRg
MR~ s7 s7 MR~
- 8,19 18,19 ~
- op gp ~
- sp sp =
— s8 s8 =
- ra ra ~
UNMAP [Systemcall]
— at — Unmap — at ~
— vO,vl v0, vl ~
control a0 a0 ~
— al...a3 jal Unmap al...a3 ~
— 10...t3 a4...a7 ~
- 4.7 th. 47~
— s0...s7 s0...s7 ~
- 8,19 18, 19 ~
- gp ap ~
- Sp Sp =
— s8 s8 =
- ra ra ~
SPACECONTROL [Privileged Systemcall]
- at — Space Control— at ~
- 0 VO result
- vl vl ~
SpaceSpecifier ao jal SpaceControl a0 control
control a1 al ~
KernellnterfacePageArea a2 a2 ~
UtcbArea a3 a3 ~
Redirector to a4 ~
— t1...13 ab...a7 ~
- t4...17 th... 17~
— s0...s7 sO...s7 ~
— 8,19 18, 19 ~
- op gp ~
- sp sp =
— s8 s8 =

ra

ra

2

156

SYSTEMCALLS

PROCESSORCONTROL [Privileged Systemcall]
— at — Processor Control— at ~
- 0 v0 result
- v vl ~
processor no a0 jal ProcessorControl a0 ~
InternalFreq a1 al ~
ExternalFreq a2 a2 ~
voltage a3 a3 ~
— t0...t3 ad...a7
- .7 4.7~
— s0...s7 s0...s7 ~
- 8,19 t8, 19 ~
- g ap ~
— sp sp =
— s8 s8 =
- ra ra ~
MEMORYCONTROL [Privileged Systemcall]
- at — Memory Control — at ~
- 0 vO result
- vi vl ~
control a0 jal MemoryControl a0 ~
attributey a1 al ~
attribute; a2 a2 ~
attribute, a3 a3 ~
attribute; a4 ~
- t1...t3 ab...a7
- .7 4.7~
— s0...s7 s0...s7 ~
- 8,19 t8, 19 ~
- g ap ~
- sp sp =
— s8 s8 =

ra

MEMORY ATTRIBUTES 157

F.3 Memory Attributes mips-64]

The mips64 architecture supports the following memory/cache attribute values, to be used withtMb&WCONTROL
system-call:

attribute value
Default 0
Uncached 1
Write-back 2
Write-through 3
Write-through (no allocate) 4
Coherent 5
Flush-1 (Flush instruction cache) 30
Flush-D (Flush data cache) 31

The default attributes depend on the platform and not all modes are defined for all processors.

Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed
from the cache.

158 EXCEPTION MESSAGE FORMAT

F.4 Exception Message Format [MIPS-64]

System Call Trap

System Call Trap Message to Exception Handler

Flags sa) MR 13
SP (64) MR 12
IP (64) MR 11

a7lt3 gy MR 10

ablt2 g4) MR ¢

ab/tl g4 MR g

a4lt0 g4, MR 7
a3 4) MR ¢
a2 g4 MR 5
al s MR 4
a0 (g4 MR 3
V1 (64) MR 2
VO (64) MR 1

-5 (44) 0 (4 t=0@) | u=13@4) MR o

When user code executes the Mgyscallinstruction, the kernel delivers the system call trap message to the exception
handler. The kernel preserves only partial user state when handdiygrallinstruction. State is preserved similarly for
the inclusive set of saved registers according the the MIPS ABI 64,n32,032 for function calls.

The non-volatile registers are0 . ..s7, gp, sp, fp/s8
The volatile registers ar&T, vO, vl1,a0...a7,t4 ...t9, k0, k1, ra, hi, lo
Thread virtual registers may also be clobbered.

Generic Traps

Generic Trap Message To Exception Handler

EXCEPTION MESSAGE FORMAT 159

LocallD (64, MR

ErrorCode gy MR 5
ExceptionNO(gy4) MR 4

Flags s4) MR 3

SP (64) MR 2

IP (64) MR 1

5 (a9) O | t=0@ [u=6 | MRo

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. The kernel preserves all user state, including thread virtual

registers.

The following is a table of values for the Generic TiapceptionNo

Exception ExceptionNo ErrorCode Delivered
Interrupt 0 - No

TLB Write Denied 1 - No

TLB Miss Load 2 - No

TLB Miss Store 3 - No

Address Error (load/execute) 4 BadVAddress Yes
Address Error (store) 5 BadVAddress Yes

Bus Error (instruction) 6 - Yes

Bus Error (data) 7 - Yes

System Call 8 - v0O>0

Break Point 9 - I(-111 > AT > -100)
Reserved Instruction 10 Instruction AT # MAGIC _KIP_REQUEST
Coprocessor Unavailable 11 Cause Registe CPO, CP2, CP3
Arithmetic Overflow 12 - Yes

Trap 13 - Yes

Virtual Coherency (instruction 14 - Yes

Floating Point 15 - Yes

Watch Point 23 - Unless used by kdb
Virtual Coherency (data) 31 - Yes

Note, not all of these exceptions will be delivered via exception IPC. Some will be handled by the kernel. Delivered
exceptions are indicated in the last column of the table above.

160 BOOTING

F.5 Booting [mips-64]

The kernel is provided as an ELF file and must be loaded according to the load addresses defined in the ELF header
(corresponding to the physical region of the virtual address space). The kernel must be started in 64bit mode.

Appendix G

AMDG64 Interface

162 VIRTUAL REGISTERS

G.1 \Virtual Registers [amds4]

Thread Control Registers (TCRS)

TCRs are implemented as part of the amd64-specific user-level thread control block (UTCB). The address of the current
thread’'s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread &ren¥
CoNTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r
UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must

not be accessed, even if they are physically accessible. ThreadWord0 and ThreadWord1 are free to be used by systems
software (e.g., IDL compilers). The kernel associates no semantics with these words.

ThreadWord Q) «—— UTCB address — 32
ThreadWord k¢4 - 40
VirtualSender/ActualSendeg 4 — 48
IntendedReceiveys,) — 56
XferTimeoutss4) - 64
ErrorCodegy) - 72
~ (48) cop flagss) preempt flagss) - 80
ExceptionHandlege) — 88
Pager(g,) - 96
UserDefinedHandlgg) -104
ProcessorNgg) -112
MyGloballd (64, -120
MyLocalld = UTCB addresgg.) gs:[0]

The TCRMyLocalldis not part of the UTCB. On amd64 it is identical with the UTCB address
and can be loaded from memory location gs:[0].

Message Registers (MRs)

Memory-mapped MRs are implemented as part of the amd64-specific user-level thread control block (UTCB). The ad-
dress of the current thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active
thread via HREADCONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLoca-
tion parameter when invokingHREADCONTROL and the UTCB address. The UTCB address of the current thread can

VIRTUAL REGISTERS 163

be loaded through a machine instruction
mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

The first 8 message registers MEhrough MR; are always mapped to general register. MRs are always mapped to
memory.

MR..7

MR 7 R15
MR 6 R14
MR5 R13
MR 4 R12
MR 3 R10
MR 2 RBX
MR RAX
MR o RO9
MR 8...63 [UTCB fle|dS]

MR 63 (64) + 456

MR 10 (64) +80

MR (64) +72

MR (64) +—— UTCB address + 64

Buffer Registers (BRS)

BRs are implemented as part of the amd64-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread menT
CoNTRoOL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

BR 0...32 [UTCB fleldS]

164

VIRTUAL REGISTERS

BRo (64) +«—— UTCB address —128
BR1 (64) -136
BR32 (64) -384

SYSTEMCALLS

G.2 Systemcalls

[amd64]

165

The system-calls which are invoked by the call instruction take the target of the calls the from system-call link fields in

the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNELINTERFACE [Slow Systemcall]

— RAX — Kernelinterface — RAX base address

- RCX Rcx API Version

— RDX RDX APl Flags

— RSl lock: nop Rsl Kernel ID

— RDI RDI =

— RBX RBX =

— RBP RBP =

— RO08 RO8 =

— RO9 RO9 =

- RI10 RI0 =

- RI11 R11 =

- RI12 R12 =

- R13 R13 =

- Rl4 R14 =

— RI15 R15 =

— RSP RSP =

EXCHANGEREGISTERS [Systemcall]
dest RAx | — Exchange Registers— | RAX result

- RCX RCX ~

SP RDX RDX SP
control RsI call ExchangeRegisters | RSl control

pager RDI RDI pager

— RBX RBX ~

— RBP RBP ~

IP Ros rRogs IP
FLAGS Ro09 rRo9 FLAGS

UserDefinedHandle R10 R10 UserDefinedHandle

- Rl R11 ~

- RI12 R12 ~

- Ri13 R13 ~

- Rl4 R14 ~

- RI15 R15 ~

— RSP RSP~

“FLAGS” refers to the user-modifiable amd64 processor flags that are held in the RFLAGS register.

166

THREADCONTROL [Privileged Systemcall]

SYSTEMCALLS

— RAX — Thread Control — RAX result

— RCX RCX ~

scheduler RDX RDX ~

pager RSl call ThreadControl RSI ~

dest RDI RDI ~

— RBX RBX ~

— RBP RBP ~

SpaceSpecifier Ros RO8 ~

UTCBLocation R09 RO9 ~

— RI10 R10 ~

— RI11 R11 ~

— RI2 R12 ~

— R13 R13 ~

— RU4 R14 ~

— RI15 R15 ~

— RSP RSP~

SYSTEMCLOCK [Systemcall]

— RAX — SystemClock— RAX clock

— RCX RCX ~

— RDX RDX ~

— RSl call SystemClock RSl ~

— RDI RDI ~

— RBX RBX ~

— RBP RBP ~

— RO8 RO8 ~

— RO9 RO9 ~

— RI10 R10 ~

— RI11 R11 ~

— RI2 R12 ~

— R13 R13 ~

— R4 R14 ~

— RI15 R15 ~

— RSP RSP~

THREADSWITCH [Systemcall]

— RAX — ThreadSwitch — RAX ~

— RCX RCX ~

— RDX RDX ~

— RSl call ThreadSwitch RSI ~

dest RDI RDI ~

— RBX RBX ~

— RBP RBP ~

— RO8 RO8 ~

— RO9 RO9 ~

— RI10 R10 ~

— RI11 R11 ~

— RI12 R12 ~

— RI13 R13 ~

— R4 R14 ~

— RI5 R15 ~

— RSP RSP~

SYSTEMCALLS 167

SCHEDULE [Systemcall]

— RAX — Schedule— RAX time control
— RCX RCX ~
time control RDX RDX ~
prio RSl call Schedule RSI ~
dest RDI RDI ~
— RBX RBX ~
— RBP RBP ~
processor control Ro8 RO8 ~
preemption control R09 RO9 ~
— RI10 R10 ~
- RL1 R11 ~
- RI12 R12 ~
- R13 R13 ~
— R4 R14 ~
— RI15 R15 ~
— RSP RSP~
IPC [Systemcall]
MR; RAX — Ipc — RAX MR
— RCX RCX ~
FromSpecifier RDX RDX ~
to RsI call Ipc RSl from
UTCB RDI RDI =
MRy RBX RBX MR»
— RBP RBP ~
Timeouts Ro8 RO8 ~
MRy RO09 RO MRy
MR3 R10 R10 MRs3
- RL1 R11 ~
MR, Ri12 R12 MRy
MR5; Ri13 R13 MR;
MRg Ri4 R14 MRg
MR, Ri15 R15 MR~
— RSP RSP~
LIPC [Systemcall]
MR: RAX — Lipc — RAX MR;
— RCX RCX ~
FromSpecifier RDX RDX ~
to RsI call Lipc Rsl from
UTCB RDI RDI =
MRz RBX RBX MR
— RBP RBP ~
Timeouts Ro08 RO8 ~
MRy R09 R09 MRy
MR3 R10 R10 MR3
- RL1 R11 ~
MRs R12 R12 MRy
MRs Ri13 R13 MRj
MRg R14 R14 MRg
MR~7 Ri15 R15 MR~
— RSP RSP~

168 SYSTEMCALLS
UNMAP [Systemcall]
MR; RAX — Unmap — RAX MR,
— RCX RCX ~
control RDX RDX ~
~ RSl callUnmap RSl ~
UTCB RDI RDI =
MRy RBX RBX MR
— RBP RBP ~
— RO8 RO ~
MRo RO9 RO MRy
MR3 R10 R10 MR3
- Rl R11 ~
MR,y R12 R12 MRy
MRs R13 R13 MRs
MRg R14 R14 MRg
MR7; Ri15 R15 MR~
— RSP RSP~
SPACECONTROL [Privileged Systemcall]
— RAX — Space Control— RAX result
- RCX RCX ~
KernellnterfacePageArea RDX RDX control
control RsI call SpaceControl RSI ~
SpaceSpecifier RDI RDI ~
— RBX RBX ~
— RBP RBP ~
UTCBArea Ro8 RO8 ~
Redirector Ro9 RO9 ~
— RI10 R10 ~
- RI11 R11 ~
- RI12 R12 ~
- RI13 R13 ~
- Rl4 R14 ~
— RI15 R15 ~
— RSP RSP~
PROCESSORCONTROL [Privileged Systemcall]
— RAX | — Processor Control— | RAX result
— RCX RCX ~
ExternalFrequency RDX RDX ~
InternalFrequency RsI call ProcessorControl | RSl ~
ProcessorNo RDI RDI ~
— RBX RBX ~
— RBP RBP ~
voltage Ro8 RO ~
- RO9 RO9 ~
— RI10 R10 ~
- R R11 ~
- RI2 R12 ~
- RI13 R13 ~
- R4 R14 ~
- RI15 R15 ~
— RSP RSP~

SYSTEMCALLS 169

MEMORYCONTROL [Privileged Systemcall]

MR: RAX | — Memory Control — | RAX ~
attributey RCX RCX ~
control RDX RDX result
attribute; RsI call MemoryControl RSI ~
UTCB RDI RDI =
MRy RBX RBX ~
— RBP RBP ~
attribute, Ro8 RO8 ~
MRy R09 RO9 ~
MR3 R10 R10 ~
attribute; R11 R11 ~
MR, R12 R12 ~
MRs Ri13 R13 ~
MRgs R14 R14 ~
MR-, Ri15 R15 ~
— RSP RSP ~

170 IO-PORTS

G.3 |0O-Ports [amdes

On AMDG64 processors, 10-ports are handled as fpages. 10 fpages can be mapped, granted, and unmapped like memory
fpages. Their minimal granularity is 1. An 10-fpage of sie has a25/-aligned base addregsi.e.p mod 2°'=0. An
fpage with base port addregssnd size2*’ is denoted as described below.

10 fpage(p, 2°')

P (16/48) s’ (6) s§=2@) |Orwz

IO-ports can only be mapped idempotently, i.e., physical pasteither mapped at 10 addresgsn the task’s 10 address
space, or it is not mapped at all.

Generic Programming Interface
#include <l4/space.h>

Fpage loFpage (Word BaseAddress, int FpageSize

Fpage loFpagelLog2 (Word BaseAddress, int Log2FpageSizé4)
Delivers an 10 fpage with the specified location and size.

CACHEABILITY HINTS 171

G.4 Cacheability Hints [amds4]
String items can specify cacheability hints to the kernel (see page 54). For amd64, the cacheability hints have the
following semantics.

hh — 00 Use the processor’s default cacheability strategy. Typically, cache lines are allocated for data
read and written (assuming that the processor’s default strategy is write-back and write-allocate).

hh = 01 Allocate cache lines in the entire cache hierarchy for data read or written.

hh =10 Do not allocate new cache lines (entire cache hierarchy) for data read or written.

hh — 11 Allocate only new L1 cache line for data read or written. Do not allocate cache lines in lower
cache hierarchies.

Convenience Programming Interface

#include <l4/ipc.h>

CacheAllocationHintUseDefaultCacheLineAllocation
CacheAllocationHintAllocateNewCacheLines
CacheAllocationHintDoNotAllocateNewCacheLines

CacheAllocationHintAllocateOnlyNewL1CacheLines

172 MEMORY ATTRIBUTES

G.5 Memory Attributes [amds4]

The AMD64 architecture in general supports the following memory attributes values.

attribute | value
Default
Uncacheable
Write Combining
Write Through
Write Protected
Write Back

~NOoOOINEFE O

Note that some attributes are only supported on certain processors. See the “AMD64 Architecture Programmer’s Manual
Volume 2: System Programming” for the semantics of the memory attributes and which processors they are supported
on.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word UncacheableMemory
Word WriteCombiningMemory
Word WriteThroughMemory
Word WriteProtectedMemory
Word WriteBackMemory

EXCEPTION MESSAGE FORMAT 173

G.6 Exception Message Format [amds4]

To Exception Handler

ErrorCode MR 20
ExceptionNo MR 19
RFLAGS MR 15
RSP MR 17
R11 MR 16
R0O9 MR 15
RO8 MR 14
RBP MR 13
RDI MR 12
RSI MR 11
RDX MR 10
RCX MR ¢
RAX MR g
R15 MR 7
R14 MR ¢
R13 MR 5
R12 MR 4
R10 MR 3
RBX MR 2
RIP MRy
—4/ =5 (44 0@y | Oy | t=0@) |[|u=204 | MRy

#PF (page fault), #MC (machine check exception), and some #GP (general protection), #SS (stack segment fault), and
#NM (no math coprocessor) exceptions are handled by the kernel and therefore do not generate exception messages.

Note that executing an IN& instructions in 32-bit mode will always raise a #GP (general protection). The exception
handler may interpret the error cods(+ 2, see processor manual) and emulate the #Nglccordingly.

174 PROCESSOR MIRRORING

G.7 Processor Mirroring [amde4]

Segments

L4 uses a flat (unsegmented) memory model. There are only three segments avasiatdpace a read/write segment,
userspaceexeg an executable segment, antth address a read-only segment. Botlserspaceanduserspaceexec
cover (at least) the complete user-level address spliteh_addresscovers only enough memory to hold the UTCB
address.

The values of segment select@re undefined When a thread is created, its segment registers SS, DS, ES and FS
are initialized withuserspace GS with utcb.address and CS withuserspaceexec Whenever the kernel detects a
general protection exception and the segment registers are not loaded properly, it reloads them with the above mentioned
selectors. From the user’s point of view, the segment registers cannot be modified.

However, the binary representationusfer spaceanduserspaceexecmay change at any point during program exe-
cution. Never rely on any particular value.

Furthermore, the LSL (load segment limit) machine instruction may deliver wrong segment limits, even floating ones.
The result of this instruction is alwaysmdefined

Debug Registers

User-level debug registers exist per thread. DRO...3, DR6 and DR7 can be accessed by the machine instructions
mov n,DRx andmov DRx,r. However, only task-local breakpoints can be activated, i.e., bits GO. .. 3 in DR7 cannot be
set. Breakpoints operate per thread. Breakpoints are signaled as #DB exception (INT 1).

Note that user-level breakpoints are suspended when kernel breakpoints are set by the kernel debugger.

Model-Specific Registers

All privileged threads in the system have read and write access to all the Model-Specific Registers (MSRs) of the CPU.
Modification of some MSRs may lead to undefined system behavior. Any access to an MSR by an unprivileged thread
will raise an exception.

BOOTING 175

G.8 Booting [amds4]

PC-compatible Machines

L4 can be loaded at any 16-byte-aligned location beyond 0x1000 in physical memory. It can be started in real mode
or in 32-bit protected mode at address 0x100 or 0x1000 relative to its load address. The protected-mode conditions are
compliant to the Multiboot Standard Version 0.6.

Start Preconditions
Real Mode 32-bit Protected Mode
load base) L >0x1000, 16-byte aligned L > 0x1000
load offset X) X =0x100 orX =0x1000 | X =0x100 orX =0x1000
Interrupts disabled disabled
Gate A20 ~ open
EFLAGS 1=0 1=0, VM=0
CRO PE=0 PE=1, PG=0
(E)IP X L+ X
Cs L/16 0, 4GB, 32-bit exec
SS,DS,ES ~ 0, 4GB, read/write
EAX ~ 0x2BADB002
EBX ~ *p
(P +0) ~OR1
(P+4) n/a below 640 K mem in K
(P + 8) beyond 1M mem in K
all remaining registers & flags
(general, floating point, ~ ~
ESP, xDT, TR, CRx, DRX)

L4 relocates itself to 0x1000, enters protected mode if started in real mode, enables paging and initializes itself.

176 BOOTING

Appendix H

SPARC v9 Interface

178 VIRTUAL REGISTERS

H.1 Virtual Registers [sparcvg]

Thread Control Registers (TCRS)

TCRs are mapped to memory locations. They are implemented as part of the sparc64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable.
Setting the UTCB address of an active thread vitREADCONTROL is similar to deletion and re-creation. There is a

fixed correlation between the UtcbLocation parameter when invokimgeRDCONTROL and the UTCB address. The

UTCB address is provided in the general purpose register g7 at application start. UTCB objects of the current thread can
then be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible. ThreadWordO and ThreadWord1 are free to be used by systems software (e.g., IDL compilers). The kernel
associates no semantics with these words.

ThreadWord k¢4 + 88
ThreadWord Q4 + 80
~ (48) cop flagss) preempt flagsg) +72
ProcessorNggy) +64
VirtualSender/ActualSendeg 4 +56
IntendedReceivef +48
ErrorCodegs) +40
XferTimeoutss4) +32
UserDefinedHandlgs 4 +24
ExceptionHandlege 4 +16
Pagers4) +8
MyGloballd (64) «—— UTCB address
MyLocalld = UTCB addresgs 4 g7

The TCRMyLocalld is not part of the UTCB. On SPARC V9 it is identical with the UTCB
address and can be loaded from register g7.

Message Registers (MRS)

Message registers MiRthrough MR; map to the local registers of the current window in the processor’s general purpose
register file for IPC and LIPC calls, otherwise they are located in the UTCB. The remaining message registers map to
memory locations in the UTCB. MRstarts at byte offset 512 in the UTCB, and successive message registers follow in
memory.

VIRTUAL REGISTERS

MRy..7 e

MR

MR 5

MR 4

MR 3

MR 2

MR 1

MR

MR 0...63 [UTCB f|6|dS]

MR 63 (64)

MR (64)

Buffer Registers (BRS)

179

+1016

«—— UTCB address + 512

The buffer registers map to memory locations in the UTCB.,BRat byte offset 248 in the UTCB, BRat byte offset

256, etc.

BR 0...32 [UTCB f|9|dS]

BR32 (64)

BR1 (64)

BRo (64)

UTCB Memory With Undefined Semantics

+504

+256

«—— UTCB address + 248

The kernel will associate no semantics with memory locatddiTa@B address- 80...UTCB address- 247. The appli-
cation can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory
contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

180 SYSTEMCALLS

H.2 Systemcalls [sparc-vo]

The system-calls which are invoked by finepl instruction take the target of the calls from the system call link fields in

the kernel interface page (see page 2). Each system-call link value specifies an address relative to the kernel interface
page’s base address. One may invoke the system calls with any instruction that branches to the appropriate target, as long
as the return-address is containedi

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

The system call definitions below only specify the contexts of the general purpose registers. Except fer tige (K-
TERFACE system-call, the contents of user accessible state registers are assumed to be scratched. The floating-point
registers are assumed to be preserved accross system calls.

KERNELINTERFACE [Slow Systemcall]

- gl..g7 — Kernellnterface — gl...g7 =

— 00 00 KIP base address
— ol ol API Version

- 02 ta 0x70 02 API Flags

— 03 03 Kernel ID

— o4 o7 =

- 10...17 0.7 =

- i0...i7 0...i7 =

EXCHANGEREGISTERS [Systemcall]

- g1 — Exchange Registers— gl ~
— 92,03 92,03 =
FLAGS g4 g4 FLAGS
— g5,96 jmpl ExchangeRegisters 95,06 ~
UTCB g7 g7 UTCB
dest o0 00 result
control o1 ol control
SP o2 02 SP
IP o3 03 IP
pager o4 o4 pager
UserDefinedHandle o5 05 UserDefinedHandle
— 06,07 06, 07 =
- 10...17 0.7 =
— i0...i0 i0...i0 =

“FLAGS” refers to the user-modifiable flags held in the SPARC v9 PSTATE register. At present only the CLE (current
little-endian) flag can be set.

SYSTEMCALLS

181

THREADCONTROL [Privileged Systemcall]
! — Thread Control — gl ~
- 9203 92,93 =
— g4...96 g4...06 ~
UTCB g7 jmpl ThreadControl g7 UTCB
dest o0 00 result
space ol ol ~
scheduler o2 02 ~
pager o3 03 ~
UtcbLocation o4 o4 ~
- 05 05 ~
— 06,07 06, 07 =
- 10...17 0.7 =
- i0...i7 i0...i7 =
SYSTEMCLOCK [Systemcall]
- g1 — SystemClock— gl ~
- 92,03 92,03 =
— g4...96 g4...96 -~
UTCB g7 jmpl SystemClock g7 UTCB
— 00 00 clock
— ol...05 0l...05 ~
— 06,07 06, 07 =
- lo...17 0.7 =
- 0...i7 0...i7 =
THREADSWITCH [Systemcall]
- g1 — ThreadSwitch — gl ~
- 02,03 92,03 =
— g4...96 g4...96 -~
UTCB g7 jmpl ThreadSwitch g7 UTCB
dest o0 00 ~
— o0l...05 o0l...05 ~
— 06,07 06, 07 =
- 10...17 0.7 =
- i0...i7 i0...i7 =
SCHEDULE [Systemcall]
- g1 — Schedule— gl ~
- 92,03 92,93 =
— g4...96 g4...96 ~
UTCB g7 jmpl Schedule g7 UTCB
dest o0 00 result
time control o1 ol time control
processor control o2 02 ~
priority 03 03 ~
preemption control o4 04 ~
— 05 05 ~
— 06,07 06, 07 =
- l0...17 0.7 =
- i0...i7 i0...i7 =

182 SYSTEMCALLS

IPC [Systemcall]

- gl —lpc — gl ~
- 92,03 92,93 =
— g4...96 g4...96 -~
UTCB g7 jmpl Ipc g7 UTCB
to o0 00 from
FromSpecifier o1 ol ~
Timeouts o2 02 ~
— 03...05 03...05 ~
— 06,07 06, 07 =
MR 10 10 MR
MR 11 11 MR
MR 12 12 MR
MR3 13 13 MR3
MR 4 14 14 MR 4
MR5 15 15 MR5
MRg 16 16 MRg
MR~ 17 17 MR~
— i0...i5 i0...15 ~
- i6,i7 i6,i7 =
LIPC [Systemcall]
- o0 — Lipc — gl ~
— 02,03 92,93 =
— g4...96 g4...06 ~
UTCB g7 jmpl Lipc g7 UTCB
to o0 00 from
FromSpecifier o1 ol ~
Timeouts o2 02 ~
— 03...05 03...05 ~
— 06,07 06, 07 =
MR 10 10 MR
MR 11 11 MR
MR 12 12 MR
MR 3 13 13 MR 3
MR 4 14 14 MR 4
MR 15 15 MR
MRg 16 16 MRg
MR~ 17 17 MR~
— i0...i5 i0...15 ~
- i6,i7 i6,i7 =
UNMAP [Systemcall]
- g1 — Unmap — gl ~
— 02,03 92,03 =
— g4..96 g4...9g6 ~
UTCB g7 jmpl Unmap g7 UTCB
control o0 00 ~
— ol...05 0l...05 ~
— 06,07 06,07 =
- 10...17 0.7 =
- i0...i7 0...i7 =

SYSTEMCALLS 183

SPACECONTROL [Privileged Systemcall]

- gl — Space Control— gl ~
- 02,03 92,03 =
— 0g4...96 g4...96 ~
UTCB g7 jmpl SpaceControl g7 UTCB
SpaceSpecifier oo 00 result
control o1 ol control
KernellnterfacePageArea o2 02 ~
UtcbArea o3 03 ~
Redirector o4 o4 ~
— 05 o5 ~
— 06,07 06, 07 =
- 10...17 0.7 =
- i0...i7 i0...i7 =

PROCESSORCONTROL [Privileged Systemcall]

- o — Processor Control— gl ~
- 092,03 92,03 =
— 0g4...96 g4...06 ~
UTCB g7 jmpl ProcessorControl g7 UTCB
ProcessorNo o0 00 result
InternalFreq o1 ol ~
ExternalFreq o2 02 ~
voltage o3 03 ~
— 04,05 04, 05 ~
— 06,07 06, 07 =
- 10...17 0.7 =
- i0...i7 i0...i7 =
MEMORYCONTROL [Privileged Systemcall]
- o — Memory Control — gl ~
- 9293 92,93 =
— g4..g6 g4...g6 ~
UTCB g7 jmpl MemoryControl g7 UTCB
control o0 00 result
attributey o1 ol ~
attribute; o2 02 ~
attribute; o3 03 ~
attribute; o4 04 ~
- o5 05 ~
— 06,07 06, 07 =
- 10...17 0.7 =
- 0...i7 0...i7 =

184 SYSTEMCALLS

Appendix |

ARM Interface

186 VIRTUAL REGISTERS

.1 Virtual Registers [arwm]

Thread Control Registers (TCRS)

TCRs are mapped to memory locations. They are implemented as part of the ARM-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB will not change over the lifetime of the thread. The UTCB
address of the current thread can be read from the memory location 0XFFO00000. UTCB objects of the current thread can
then be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible.

ThreadWord k30, +44
ThreadWord Q32 +40
VirtualSender/ActualSendes) +36
IntendedReceiveg;o) +32
ErrorCode3z) +28
XferTimeouts o) +24
~ (16) cop flagss) preempt flagss) +20
ExceptionHandlegs,) +16
Pager(sz) +12
UserDefinedHandlg;) +8
ProcessorNgsz) +4
MyGloballd (32) «—— UTCB address
MyLocalld = UTCB addresgs.) UTCB syscall

The TCRMyLocalldis not part of the UTCB. On ARM it is identical with the UTCB address
and can be obtained by a load from memory location 0xFF0000000.

Message Registers (MRS)

Message registers MiRthrough MR, map to the processor’s general purpose register file for IPC, LIPC and unmap calls.
The remaining message registers map to memory locations in the UTCB.StRs at byte offset 84 in the UTCB, and
successive message registers follow in memory.

The first five message registers are mapped to the registers r3 to r7. MRre mapped to memory in the UTCB.

VIRTUAL REGISTERS 187

MR
0..4 MRo 2 a

MR (32 r4
MR 2 (32 5
MR35 (32) 6
MR 4 (32) r7

MR 5. 63 [UTCB fields]
MR 63 (32) +316
MR 5 (32) «— UTCB address + 84

Buffer Registers (BRS)

The buffer registers map to memory locations in the UTCB.,BRat byte offset 320 in the UTCB, BRat byte offset
324, etc.

BRy. .32 [UTCB fields]

BR32 (32 +448
BR1 (32) +324
BRo (32) «—— UTCB address + 320

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located ®EB address+ 452.. UTCB address+ 511. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

188 SYSTEMCALLS

.2 Systemcalls [arm

The system-calls, which are invoked by thiénstruction, take the target of the calls from the system call link fields in the

kernel interface page (see page 2). Each system-call link value specifies an address relative to the kernel interface page’s
base address. One may invoke the system calls with any instruction that branches to the appropriate target, as long as the
return-address is containedrity.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are

always provided in the KIP.

The sp andlIr registers are always preserved across system calls. RegiBtel® have undefined values following
system calls other than Kernellnterface.

KERNELINTERFACE

[Slow Systemcall]

- 10 — Kernellnterface — 10 KIP base address
- n ri APl Version

- r2 APl Flags

- 3 bl 0XFEO000B4 r3

Kernel ID

For this system-call all registers other than the output registers are preserved.

EXCHANGEREGISTERS

[Systemcall]

dest r0 — Exchange Registers— ro result
control n r1 control
SP r2 SP
IP 3 bl ExchangeRegisters 3 IP
FLAGS ra FLAGS
UserDefinedHandle rs r5 UserDefinedHandle
pager r6 6 pager
- 7 r7 ~
THREADCONTROL [Privileged Systemcall]
dest r0 — Thread Control — r0 result
space r1 o~
scheduler r2 r2
pager r3 bl ThreadControl r3

UTCB

2222

SYSTEMCALLS 189
SYSTEMCLOCK [Systemcall]
- 10 — SystemClock— ro clock 0..31
- n ri clock 32..63
- r2 r2 ~
- 3 bl SystemClock 3~
- 4 r4 ~
- 15 5~
- 16 ré ~
- 17 7~
THREADSWITCH [Systemcall]
dest r0 — ThreadSwitch — 0~
- n o~
- r2 r2 ~
- 3 bl ThreadSwitch 3~
— r4 r4 ~
- 15 5~
- 16 ré ~
- 17 7~
SCHEDULE [Systemcall]
dest 10 — Schedule— 0 result
TimeControl ri TimeControl
ProcessorControl r2 2 o~
priority 3 bl Schedule 3~
PreemptionControl r4 4~
L) r5 ~
- 16 e~
- 17 7~
IPC [Systemcall]
dest r0 — Ipc — ro result
FromSpecifier r o~
Timeouts r2 2~
MR, 3 bl Ipc 3 MRy
MR, r4 r4 MR,
MR: 5 r5 MR2
MRs 16 i MR3
MRy 17 7 MRy
LIPC [Systemcall]
dest ro0 — Lipc — ro result
FromSpecifier r1 o~
Timeouts r2 2~
MR, 3 bl Lipc 3 MRy
MRy r4 r4 MR,
MRy 5 5 MRy
MR; 16 i MR3
MR, 7 7 MRy

190 SYSTEMCALLS

UNMAP [Systemcall]

control r0 — Unmap — 0~

- n o~

- r2 ~
MR, 3 bl Unmap i MRy
MR, r4 r4 MR,
MR2 5 r5 MR2
MRs 16 i MRs
MR, 17 7 MRy

SPACECONTROL [Privileged Systemcall]

SpaceSpecifier ro — Space Control— o result
control r1 ri control

KernellnterfacePageArea r2 2~
UtcbArea r3 bl SpaceControl 3~

Redirector r4 4~

— 5 5 ~

- 16 6~

- 17 r7 ~

PROCESSORCONTROL [Privileged Systemcall]

ProcessorNo 0 — Processor Control— r0 result
InternalFreq r1 o~
ExternalFreq r2 2~
voltage r3 bl ProcessorControl 3~
- r4 r4 ~
- 15 5~
- 16 e~
- 17 7~

MEMORYCONTROL [Privileged Systemcall]

control ro — Memory Control — r0 result
attributey 1 o~
attribute;, 2 2~
attribute, r3 bl MemoryControl 3~
attribute; 4 4~
— 5 5 ~
— 16 ré ~
— 7 r7 ~

MEMORY ATTRIBUTES 191

.3 Memory Attributes [arwm]

The ARM architecture supports the following memory/cache attribute values, to be used witfetheRMCONTROL
system-call:

attribute | value
Default 0
Uncached 1

Flush(1+D) | 31

The default memory attributes specify cached access.
Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed
from the cache.

192

.4 Space Control [arwm]

The SPACECONTROL system call has an architecture dependemntrol parameter to specify various address space char-
acteristics. For ARM, theontrol parameter has the following semantics.

Input Parameter

control 0
(25)

PID (7

PID Sets the PID register value that will be loaded for threads in this address space. The effect of this
is described in the Fast Context Switch Extension section of the ARM Architecture Reference

Manual.

All addresses supplied to and returned from kernel syscalls (e.g. UTCB location) correspond to

the MVA.

SPACE CONTROL

EXCEPTION MESSAGE FORMAT 193

.5 Exception Message Format [arm]

Syscall emulation exception message

Flags sz) MR 13
Syscall(32) MR 12
LR (32) MR 11
SP(32) MR 10
17 (32) MR g
16 (32 MR g
15 (32) MR 7
r4 (32 MR ¢
r3 (32) MR 5
r2 (32) MR 4
rl (s9) MR 3
10 (32 MR 2
PC (32) MR,
=5 (12) O | O | t=0¢) |u=133@ | MRo

On execution of an ARMBWIinstruction, the above message is delivered to the thread’s exception handler.

The Syscallfield contains the encoding of the instruction causing the system call exception. The exception handler can
decode the system call number from the lower 24 bits.

194 BOOTING

1.6 Booting [ArM]

The kernel is provided as an ELF file and must be loaded at the physical load address defined in the ELF header. It must
begin execution at the corresponding physically addressed entry point with MMU disabled.

Appendix J

Generic Bootlnfo

196 GENERIC BOOTINFO

J.1 Generic BootInfo [pata structure]

The generic BootInfo structure contains boot loader specific data such as loaded modules or files, location of system
tables, etc. The data structure can be located anywhere in memory, but must be aligned at a word size.

The BootlInfo structure is a pure boot loader specific object. That is, the kernel does not associate any semantics with
its contents. A boot loader is free to choose whether to provide a BootInfo structure or not. Starting a system without a
generic BootInfo structure is perfectly valid.

First BootInfo Record First Entry

~ Num Entries +10/+20

First Entry Size Version Magic Bootinfo
+C/+18 +8/+10 +4/+8 +0

The base address of the bootinfo structure is specified by the Bootinfo field in the kernel interface page (see page 4). Note
that the base address as specified by the BootInfo field is a physical address. An application running on virtual memory
must determine the location of the BootInfo structure within its own address space by other means.

Bootinfo Description

Magic The magic number 0x14B0021D. The magic also determines the endianess of the structure (i.e.,
the value 0x1D02B014 indicates that the endian is wrong). The word size of the BootInfo
structure is defined by the word size specified in the kernel interface page (see page 3).

Version API version of the Bootlnfo structure. This document describes version 1. Note that any changes
in the BootInfo records themselves do not influence the version in the main BootInfo structure.
This enables BootInfo records to be added or modified without introducing major incompatibili-
ties with a program that parses the BootInfo structure. Only the added/modified BootInfo record
types are influenced by the update.

Size The size (in bytes) of the complete Bootinfo structure, including all BootInfo records and data
referenced by these records.

First Entry Points to the first BootInfo recordkirst Entryis given as an address relative to the base address
of the BootInfo structure itself.

Num Entries Number of BootInfo records in the BootInfo structure.

Generic BootInfo Record
The exact structure of a BootInfo record is determined by the type of the record. Only the three
first words of the record are defined for all BootInfo record types.

Offset Next Version Type

+8/+10 +4/+8 +0

Type Specifies the type of the Bootlnfo record.

GENERIC BOOTINFO 197

Version Specifies the API version of the Bootinfo record type. Increasing the version of a Bootinfo
record type does not also require an increase in the main BootInfo version. Later versions of a
BootInfo record are guaranteed to be backwards compatible with older versions.

Offset Next The offset (in bytes) to the next BootInfo record. Note that the offset may vary from record to
record, even for records of the same type. This enables the boot loader to have variable length
records, place data in between records, or otherwise align records for ease of implementation.
It is wrong to assume that the offset associated with a particular version of a record type is
constant.

Convenience Programming Interface

#include <l4/bootinfo.h>

struct BooTREC { Word raw [*] }

Bool BootInfo_Valid (void* BootInfg
Checks whether specified BootInfo structure is valid or not (i.e., whether the magic number and
the version number are correct).

Word BootInfo_Size (void* BootInfg
Delivers the size (in bytes) of the BootInfo structure. Itis assumeddbatinfospecifies a valid
Bootlnfo structure.

BootRec* BootInfo_FirstEntry (void* BootInfg
Delivers the first BootInfo record of the BootInfo structure. It is assumed&batinfospecifies
a valid BootInfo structure.

Word BootInfo_Entries (void* BootInfg
Delivers the number of BootInfo records in the BootInfo structure. It is assume® tudinfo
specifies a valid BootlInfo structure.

Word Type (BootRec* BootRegc [BootRecTypqg
Delivers the type of the Bootinfo record.

BootRec* Next (BootRec* BootRec [BootRecNexi
Delivers the next BootInfo record. The value returned by the last BootInfo record in the BootInfo
structure is undefined.

198

J.2 Bootinfo Records

[BootlInfo]

BOOTINFO RECORDS

BootlInfo records can be listed in any order. This section lists currently defined BootInfo records. A program encountering
an unknown Bootinfo record can skip past the record using the ubiqu@ifisst Nexfield.

Simple Module

Start
Size

Cmdline Off

The Simple ModuleBootInfo record specifies a binary file loaded into main memory by the

boot loader.
Cmdline Off Size +10/+20
Start Offset Next version= 1 type= 0x1
+C/+18 +8/+10 +4/+8 +0

Physical address of first byte in loaded module.

Size of loaded module (in bytes).

Address of command line associated with loaded module, or 0 if no command line exists. Ad-
dress is specified relative to base address of current BootInfo record.

Simple Executablelhe Simple ExecutablBootinfo record specifies an executable file which has been loaded into
main memory and relocated by the boot loader. The record can only specify simple executables

Pstart

Vstart

Size

Initial IP

Flags

Label

Cmdline Off

with single code, data, and bss sections.

Cmdline Off Label Flags Initial IP +30/+60
Bss.Size Bss.Vstart Bss.Pstart Data.Size +20/+40
Data.Vstart Data.Pstart Text.Size Text.Vstart +10/+20
Text.Pstart Offset Next version= 1 type= 0x2
+C/+18 +8/+10 +4/+8 +0

Physical address of first byte in code/data/bss section of the loaded executable.
Virtual address of first byte in code/data/bss section of the loaded executable.
Size of code/data/bss section (in bytes).

Virtual address of entry point for loaded executable.

Flags for the loaded executable (defined by boot loader or application programs). Note that
regular applications may not necessarily have write permissions dfdbefield.

Freely available word (defined by boot loader or application programs). Note that regular appli-
cations may not necessarily have write permissions ohahelfield.

Address of command line associated with loaded executable, or 0 if no command line exists.
Address is specified relative to base address of current BootInfo record.

BOOTINFO RECORDS 199

EFI Tables TheEFI TablesBootInfo record specifies the location and size of the EFI memory map, and the
location of the EFI system table.
Memdesc Version| Memdesc Size Memmap Size Memmap +10/+20
Systab Offset Next version= 1 type= 0x101
+C/+18 +8/+10 +4/+8 +0
Systab Physical address of EFI system table, or 0 if EFI system table is not present.
Memmap Physical address of EFI memory map. Undefinddémmap Size- 0.

Memmap Size Size (in bytes) of the EFI memory map, or 0 if EFI memory map is not present.
Memdesc Size Size (in bytes) of descriptor entries in the EFI memory map. Undefingi@imfmap Size- 0.

Memdesc Version Version of descriptor entries in the EFI memory map. Undefinddieiihmap Size- 0.

Multiboot info TheMultiboot infoBootInfo record specifies the location of the first byte in the multiboot header.

Multiboot Addr Offset Next version= 1 type= 0x102

+C/+18 +8/+10 +4 [+8 +0

Multiboot Addr Physical address of first byte in multiboot header.

Convenience Programming Interface

#include <l4/bootinfo.h>

Word BootInfo_Module
Word BootInfo_SimpleExec
Word Bootinfo_EFITables
Word BootInfo_Multiboot

Word Module_Start (BootRec* b

Word Module_Size (BootRec* b
Delivers the start and size of the specified boot module.

char* Module_.Cmdline (BootRec* b
Delivers the command line of the specified boot module, or 0 if command line does not exist.

Word SimpleExecTextPstart (BootRec* b
Word SimpleExecTextVstart (BootRec* b
Word SimpleExecTextSize (BootRec* B
Word SimpleExecDataPstart (BootRec* B
Word SimpleExecDataVstart (BootRec*)
Word SimpleExecDataSize (BootRec* B
Word SimpleExecBssPstart (BootRec* b
Word SimpleExecBssVstart (BootRec* B

200 BOOTINFO RECORDS

Word SimpleExecBssSize (BootRec* B
Delivers physical start address, virtual start address, and size of the code/data/bss section of the
specified executable.

Word SimpleExeclnitiallP (BootRec* b
Delivers virtual address of entry point for the specified executable.

Word SimpleExecFlags (BootRec* B

void SimpleExecSetFlags (BootRec* b, Word \v
Delivers/sets the flags field for the specified executable.

Word SimpleExecLabel (BootRec* b

void SimpleExecSetLabel (BootRec* b, Word \v
Delivers/sets the label field for the specified executable.

char* SimpleExecCmdline (BootRec* b
Delivers the command line of the specified executable, or 0 if command line does not exist.

Word EFI _Systab (BootRec* b
Delivers the EFI system table, or O if system table not present.

Word EFlI _Memmap (BootRec* b
Word EFlI _MemmapSize (BootRec* b
Word EFI _MemdescSize(BootRec* b

Word EFI _MemdescVersion (BootRec* b
Delivers location of the EFI memory map, size of memory map, size of memory map descriptor
entries, and version of memory map descriptor entrie€Ff MemmapSize (elivers 0, the
other return values are undefined.

Word MBI _Address (BootRec* b
Delivers the physical location of the first byte in the multiboot header.

Appendix K

Development Remarks

These remarks illuminate the design process from version 2 to version 4.

K.1 Exception Handling

The current model decided upon for exception handling in L4 is to associate an exception handler thread with each thread
in the system (see page 68). This model was chosen because it allowed us to handle exceptions generically without
introducing any new concepts into the API. It also closely resembles the current page fault handling model.

Another model for exception handling is to use callbacks. Using this model an instruction pointer for a callback
function and a pointer to an exception state save area is associated with each thread. Upon catching an exception the
kernel stores the cause of the exception into the save area and transfers execution to the exception callback function.

It is evident that the callback model can be faster than the IPC model because the callback model may require only
one control transfer into the kernel whereas the IPC model will require at least two. Nevertheless, the IPC model was
chosen because it introduces no new mechanisms into the kernel, and we are currently not aware of any real life sce-
nario where the extra performance gain you very much. There exists a challenge to prove these claims wrong. See
http://14hq.org/fun/ for the rules of the challenge.

http://l4hq.org/fun/

202 APPENDIX K. DEVELOPMENT REMARKS

Table of Procs, Types, and Constants

used system call page
! = (CacheAllocationHint I, r) Bool —hone— 56
= (Clock 1, r) Bool —none— 26
!=(MsgTag |, r) Bool —nhone— 48
= (Threadld I, r) Bool —none— 15
!=(Time |, r) Bool —hone— 29
+ (Acceptor |, r) Acceptor —none— 57
+ (Clock 1, int r) Clock —none— 26
+ (Clock I, Word64 r) Clock —none— 26
+ (Fpage f, Word AccessRights) Fpage —hone— 37
+ (MsgTag t, Word label) MsgTag —none— 48
+ (Stringltem s, CacheAllocationHint h) Stringltem —none— 56
+ (Time I, r) Time —none— 29
+ (Time |, Word r) Time —none— 29
+ = (Acceptor |, r) Acceptor —none— 57
+ = (Fpage f, Word AccessRights) Fpage —hone— 37
+ = (MsgTag t, Word label) MsgTag —none— 48
+ = (Stringltem& dest, Stringltem AdditionalSubstring) Stringltem & —hone— 55
+ = (Stringltem& dest, void* AdditionalSubstringAddress) Stringltem & —none— 55
+ = (Stringltem s, CacheAllocationHint h) Stringltem —hone— 56
+=(Time |, r) Time —none— 29
+=(Time |, Word r) Time —none— 29
— (Acceptor |, r) Acceptor —nhone— 57
— (Clock |, intr) Clock —none— 26
— (Clock I, Word64 r) Clock —nhone— 26
— (Fpage f, Word AccessRights) Fpage —hone— 37
— (Time |, r) Time —nhone— 29
— (Time |, Word r) Time —none— 29
— = (Acceptor |, r) Acceptor —nhone— 57
— = (Fpage f, Word AccessRights) Fpage —nhone— 37
—=(Time I, r) Time —nhone— 29
—=(Time |, Word r) Time —none— 29
< (Clock 1, r) Bool —nhone— 26
< (Time |, r) Bool —none— 29
<= (Clock |, r) Bool —nhone— 26
<= (Time, r) Bool —none— 29
== (CacheAllocationHint |, r) Bool —hone— 56
== (Clock |, r) Bool —none— 26
== (MsgTag |, r) Bool —nhone— 48
== (Threadld I, r) Bool —none— 15
== (Time |, r) Bool —nhone— 29
> (Clock I, r) Bool —none— 26
> (Time |, r) Bool —nhone— 29
>= (Clock |, r) Bool —none— 26
>= (Time [, r) Bool —nhone— 29
Abortlpc _and_stop (Threadld t) ThreadState XMEHANGEREGISTERS 21
Abortlpc _and_stop (Threadld t, Word& sp, ip, flags) ThreadState XEHANGEREGISTERS 21
AbortReceive and_stop (Threadld t) ThreadState XMEHANGEREGISTERS 21
AbortReceive and_stop (Threadld t, Word& sp, ip, flags) ThreadState XEHANGEREGISTERS 21
AbortSend_and_stop (Threadld t) ThreadState XMEHANGEREGISTERS 21

204 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page
AbortSend_and_stop (Threadld t, Word& sp, ip, flags) ThreadState XEHANGEREGISTERS 21
Accepted() Acceptor —none— 58
Acceptor data type —n/a— 57
Accept (Acceptor a) void —none— 58
Accept (Acceptor a, MsgBuffer& b) void —hone— 58
ACPIMemoryType Word const —n/a— 115
ActualSender() Threadld —hone— 17
ActualSender() Threadld —nhone— 65
Address(Fpage f) Word —none— 37
AllocateNewCacheLinegCacheAllocationHint const —nla— 171
AllocateNewCacheLinesCacheAllocationHint const —n/a— 97
AllocateOnlyNewL1CacheLinesCacheAllocationHint const —n/a— 171
AllocateOnlyNewL1CacheLinesCacheAllocationHint const —n/a— 97
anylocalthread Threadld const —n/a— 15
anythread Threadld const —nla— 15
ApiFlags () Word —hone— 8
ApiVersion () Word —none— 8
Append (MsgBuffer& b, Stringltem * s) void —hone— 58
Append (MsgBuffer& b, Stringltem s) void —none— 58
Append (Msg& msg, Grantltem g) void —hone— 49
Append (Msg& msg, Mapltem m) void —none— 49
Append (Msg& msg, Stringltem& s) void —nhone— 49
Append (Msg& msg, Stringltem s) void —none— 49
Append (Msg& msg, Word w) void —nhone— 49
ArchitectureSpecificMemoryType Word const —nla— 9
Associatelnterrupt (Threadld InterruptThread, InterruptHandler) Word —nhone— 24
BootInfo_EFITables Word const —n/a— 199
BootInfo_Entries (void* BootInfo) Word —nhone— 197
BootInfo_FirstEntry (void* Bootinfo) BootRec* —none— 197
BootInfo_Module Word const —n/a— 199
BootInfo_Multiboot Word const —n/a— 199
BootInfo _SimpleExecWord const —n/a— 199
BootInfo_Size(void* BootInfo) Word —none— 197
BootlInfo_Valid (void* BootInfo) Bool —hone— 197
BootlInfo (void* Kernellnterface) Word —none— 9
BootLoaderSpecificMemoryTypeWord const —n/a— 9
BootRecdata type —n/a— 197
CacheAllocationHint (Stringltem s) CacheAllocationHint —none— 56
CacheAllocationHint data type —n/a— 55
CacheNonTemporalAllLevelsCacheAllocationHint const —n/a— 113
CacheNonTemporalL1CacheAllocationHint const —n/a— 113
CacheNonTemporalL2CacheAllocationHint const —n/a— 113
CachingEnabledMemoryWord const —n/a— 124
CachinglnhibitedMemory Word const —n/a— 124
Call (Threadld to) MsgTag AC 63
Call (Threadld to, Time SndTimeout, RcvTimeout) MsgTag pcl 64
Clear (MsgBuffer& b) void —none— 58
Clear (Msg& msg) void —hone— 49
Clock data type —n/a— 26
Clr _CopFlag (Word n) void —none— 17
Clr _CopFlag (Word n) void —none— 69
CompleteAddressSpacé&page const —nla— 37
CompundsString (Stringltemé& s) Bool —nhone— 55
ConventionalMemoryType Word const —n/a— 9
Deassociatelnterrupt(Threadld InterruptThread) Word —nhone— 24
DedicatedMemoryTypeWord const —nla— 9
DefaultMemory Word const —n/a— 114
DefaultMemory Word const —nla— 124
DefaultMemory Word const —n/a— 172
DefaultMemory Word const —n/a— 73
DefaultMemory Word const —n/a— 98
DisablePreemptionFaultException() Bool —none— 34
DisablePreemption() Bool —nhone— 34

TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page
DoNotAllocateNewCacheLinesCacheAllocationHint const —n/a— 171
DoNotAllocateNewCacheLinesCacheAllocationHint const —n/a— 97
EFI_MemdescSizgBootRec* b) Word —none— 200
EFI _MemdescVersion(BootRec* b) Word —none— 200
EFI_MemmapSize(BootRec* b) Word —none— 200
EFI_Memmap (BootRec* b) Word —nhone— 200
EFI_Systab(BootRec* b) Word —none— 200
EnablePreemptionFaultException() Bool —nhone— 34
EnablePreemption() Bool —none— 34
ErrinvalidParam Word const —nla— 33
ErrinvalidParam Word const —n/a— 73
ErrinvalidScheduler Word const —n/a— 24
ErrinvalidSpace Word const —nla— 24
ErrinvalidSpace Word const —n/a— 43
ErrinvalidThread Word const —n/a— 21
ErrinvalidThread Word const —n/a— 24
ErrinvalidThread Word const —n/a— 33
ErrKipArea Word const —n/a— 43
ErrNoMem Word const —n/a— 24
ErrNoPrivilege Word const —n/a— 24
ErrNoPrivilege Word const —n/a— 33
ErrNoPrivilege Word const —n/a— 43
ErrNoPrivilege Word const —nla— 71
ErrNoPrivilege Word const —n/a— 73
ErrorCode () Word —none— 17
ErrorCode () Word —hone— 21
ErrorCode () Word —none— 24
ErrorCode () Word —nhone— 33
ErrorCode () Word —none— 43
ErrorCode () Word —hone— 64
ErrorCode () Word —none— 71
ErrorCode () Word —nhone— 73
ErrUtcbArea Word const —n/a— 24
ErrUtcbArea Word const —n/a— 43
ExceptionHandler () Threadld —none— 17
ExceptionHandler () Threadld —none— 68

ExchangeRegisters (Threadld dest, Word control, sp, ip, flags,

old_UserDefinedHandle, Threadld& ajshger) Threadld
eXecutableWord const

ExternalFreq (ProcDescé& p) Word

Feature (void* Kernelinterface, Word num) char*
Flush (Fpage f) Fpage

Flush (Word n, Fpage& [n] fpages) void
FpagelLog2(Word BaseAddress, int Log2FpageSizé4) Fpage
Fpage(Word BaseAddress, int FpageSizelK) Fpage
Fpagedata type

FullyAccessibleWord const

GetStatus(Fpage f) Fpage

Get (Msg& msg, Word& ut,{Mapltem, Grantltem, Stringltej& Items) void
Get (Msg& msg, Word t, Grantltem& g) Word

Get (Msg& msg, Word t, Mapltem& m) Word

Get (Msg& msg, Word t, Stringltemé& s) Word

Get (Msg& msg, Word u) Word

Get (Msg& msg, Word u, Word& w) void

Globalld (Threadld t) Threadld

Globalld (Threadld t) Threadld

Globalld (Word threadno, version) Threadld
GlobalMemory Word const

Grantltem (Fpage f, Word SndBase) Grantltem
Grantltem (Grantltem g) Bool

Grantltem data type

GuardedMemory Word const

UserDeEXCHANGEREGISTERS 20
finedHandle, Threadld pager, Word& otintrol, oldsp, oldip, old_flags,

—n/a— 37
—none— 10
—none— 9

NMAP 40

NMAP 40
—none— 37
—none— 37
—n/a— 36
—n/a— 37
—none— 40
—none— 49
—none— 50
—none— 50
—none— 50
—none— 50
—none— 50

ECHANGEREGISTERS 15
ECHANGEREGISTERS 20

—none— 15
—n/a— 124
—none— 53
—none— 53
—n/a— 53
—n/a— 124

206 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page
High (MemoryDesc& m) Word —none— 9
IntendedReceiver() Threadld —none— 17
IntendedReceiver() Threadld —none— 64
InternalFreq (ProcDesc& p) Word —none— 10
loFpageLog2(Word BaseAddress, int Log2FpageSizé4) Fpage —hone— 170
loFpageLog2(Word BaseAddress, int Log2FpageSizé4) Fpage —nhone— 95
loFpage (Word BaseAddress, int FpageSize) Fpage —hone— 170
loFpage (Word BaseAddress, int FpageSize) Fpage —nhone— 95
IpcFailed (Msg Tag t) Bool —none— 64
IpcPropagated (Msg Tag t) Bool —nhone— 64
IpcRedirected (Msg Tag t) Bool —nhone— 64
IpcSucceededMsg Tag t) Bool —nhone— 64
IpcXcpu (Msg Tag t) Bool —none— 64
Ipc (Threadld to, FromSpecifier, Word Timeouts, Threadld& from) MsgTag pC | 63
IsGloballd (Threadld t) Bool —nhone— 15
IsLocalld (Threadid t) Bool —hone— 15
IsNilFpage (Fpage f) Bool —none— 37
IsNilThread (Threadld t) Bool —hone— 15
IsVirtual (MemoryDesc& m) Bool —none— 9
KernelGenDate (void* Kernellnterface, Word& year, month, day) void —hone— 8
Kernelld () Word —none— 8
Kernelinterface () void* KERNELINTERFACE 8
Kernellnterface (Word& ApiVersion, ApiFlags, Kernelld) void * KERNELINTERFACE 8
KernelSupplier (void* Kernellnterface) Word —nhone— 8
KernelVersionString (void* Kernellnterface) char* —none— 9
KernelVersion (void* Kernellnterface) Word —nhone— 8
KipAreaSizelLog?2 (void* Kernellnterface) Word —none— 9
Label (Msg& msg) Word —nhone— 49
Label (Msg Tag t) Word —none— 48
LargeSpaceWord const —n/a— 96
Lcall (Threadld to) MsgTag lpc 64
Lipc (Threadld to, FromSpecifier, Word Timeouts, Threadld& from) MsgTag IPcL 63
LoadBRs (int ¢, k, Word& [£]) void —none— 11
LoadBRs (int ¢, k, Word& [k]) void —hone— 58
LoadBR (int 7, Word w) void —none— 11
LoadBR (int 7, Word w) void —none— 58
LoadMRs (int ¢, k, Word& [k] w) void —none— 11
LoadMRs (int i, k, Word& [k] w) void —none— 50
LoadMR (int z, Word w) void —none— 11
LoadMR (int ¢, Word w) void —none— 50
Load (Msg& msg) void —none— 49
Localld (Threadld t) Threadld ECHANGEREGISTERS 15
Localld (Threadld t) Threadld ECHANGEREGISTERS 20
LocalMemory Word const —n/a— 124
Low (MemoryDesc& m) Word —none— 9
LreplyWait (Threadld to, Threadld& from) MsgTag lec 64
MapGrantltems (Acceptor a) Bool —none— 58
MapGrantltems (Fpage RcvWindow) Acceptor —none— 57
Mapltem (Fpage f, Word SndBase) Mapltem —nhone— 51
Mapltem (Mapltem m) Bool —none— 52
Mapltem data type —n/a— 51
MBI _Address(BootRec* b) Word —none— 200
MemoryControl (Word control, Word& attributes[4]) Word MMORYCONTROL 73
MemoryDesc(void* Kernellnterface, Word num) MemoryDesc* —none— 9
MemoryDescdata type —nla— 8
Module_Cmdline (BootRec* b) char* —none— 199
Module_Size(BootRec* b) Word —nhone— 199
Module_Start (BootRec* b) Word —nhone— 199
MsgBuffer data type —n/a— 58
MsgTag () MsgTag —none— 48
MsgTag (Msg& msg) MsgTag —nhone— 49
MsgTag data type —nla— 48

Msg data type —n/a— 49

TABLE OF PROCS, TYPES, AND CONSTANTS 207

used system call page
MyGloballd () Threadld —none— 15
MyGloballd () Threadld —none— 17
MyLocalld () Threadld —none— 15
MyLocalld () Threadld —none— 17
Myself () Threadld —none— 15
Myself () Threadld —nhone— 17
NaTPageMemoryWord const —n/a— 114
Never Time const —n/a— 28
Next (BootRec* BootRec) BootRec* —nhone— 197
Nilpage Fpage const —nla— 37
Niltag MsgTag const —n/a— 48
nilthread Threadld const —n/a— 15
NoAccessNord const —n/a— 37
NumMemoryDescriptors (void* Kernellnterface) Word —nhone— 8
NumProcessorgvoid* Kernellnterface) Word —none— 8
PageRights(void* Kernellnterface) Word —nhone— 8
Pager() Threadld —nhone— 17
Pager(Threadld t) Threadld ECHANGEREGISTERS 20
PageSizeMasKvoid* Kernellnterface) Word —nhone— 8
PAL _Call (Word idx, al, a2, a3, Word& r1, r2, r3) Word PACALL 106
PClIConfigFpagelLog2(Word BaseAddress, int Log2FpageSizé4) Fpage —none— 112
PClIConfigFpage(Word BaseAddress, int FpageSize256) Fpage —nhone— 112
PreemptionPending() Bool —none— 34
ProcDesc(void* Kernellnterface, Word num) ProcDesc* —hone— 9
ProcDescdata type —nla— 8
ProcessorControl (Word ProcessorNo, control, InternalFrequency, ExternalFrenone— 71
guency, voltage) Word
ProcessorNq() int —nhone— 17
Put (Msg& msg, Word |, int u, Word& {i] ut, int t, {Mapltem Grantltem, Stringltem —none— 49
}& ltems) void
Put (Msg& msg, Word t, Grantltem g) void —none— 50
Put (Msg& msg, Word t, Mapltem m) void —nhone— 49
Put (Msg& msg, Word t, Stringltem& s) void —none— 50
Put (Msg& msg, Word t, Stringltem s) void —hone— 50
Put (Msg& msg, Word u, Word w) void —none— 49
RcvWindow (Acceptor a) Fpage —none— 58
ReadableWord const —n/a— 36
ReadeXecOnlyWord const —n/a— 37
ReadPrecision(void* Kernellnterface) Word —none— 9
Receive(Threadld from) MsgTag AC 64
Receive(Threadld from, Time RcvTimeout) MsgTag Pt 64
ReplyWait (Threadld to, Threadld& from) MsgTag Pt 64
ReplyWait (Threadld to, Time RcvTimeout, Threadld& from) MsgTag pcl 64
Reply (Threadld to) MsgTag AC 64
ReservedMemoryTypeWord const —n/a— 9
Rights (Fpage f) Word —none— 37
SAL _Call (Word idx, a1, a2, a3, a4, ab, a6, Word& r1, r2, r3) Word SEhLL 106
SAL _PCI_ConfigRead(Word address, size, Word& value) Word SATALL 106
SAL_PCI_ConfigWrite (Word address, size, value) Word SATALL 106
SameThready(Threadld |, r) Bool EXCHANGEREGISTERS 15
SchedulePrecisior(void* Kernellnterface) Word —nhone— 9
Schedule(Threadld dest, Word TimeControl, ProcessorControl, prio, PreempticBeHEDULE 33
Control, Word& old TimeControl) Word
Send(Threadld to) MsgTag HC 64
Send(Threadld to, Time SndTimeout) MsgTag pd 64
Set CopFlag (Word n) void —nhone— 17
Set CopFlag (Word n) void —hone— 69
Set ExceptionHandler (Threadld new) void —nhone— 68
Set ExceptionHandler (Threadld NewHandler) void —hone— 17
SetLabel (Msg& msg, Word label) void —nhone— 49
SetMsgTag (MsgTag t) void —nhone— 48
SetMsgTag (Msg& msg, MsgTag t) void —nhone— 49

Set PageAttribute (Fpage f, Word attribute) Word EMORYCONTROL 73

208

TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page
SetPager(Threadld NewPager) void —hone— 17
SetPager(Threadld t, p) void KCHANGEREGISTERS 20
Set PagesAttributes(Word »n, Fpage& [n] fpages, Word& [4] attributes) Word BMORYCONTROL 73
Set PreemptionDelay(Threadld dest, Word sensitivePrio, Word maxDelay) Word-none— 33
Set Priority (Threadld dest, Word prio) Word —hone— 33
Set ProcessorNo(Threadld dest, Word ProcessorNo) Word —nhone— 33
Set Propagation (Msg& Tag t) void —hone— 65
SetRights (Fpage& f, Word AccessRights) void —nhone— 37
SetTimeslice(Threadld dest, Time ts, Time tq) Word —hone— 33

Set UserDefinedHandle(Threadld t, Word handle) void YECHANGEREGISTERS 20

SetUserDefinedHandle(Word NewValue) void —nhone— 17
Set VirtualSender (Threadld t) void —nhone— 17
Set VirtualSender (Threadld t) void —nhone— 65
Set XferTimeouts (Word NewValue) void —nhone— 17
SharedMemoryType Word const —nla— 9
SimpleExecBssPstart(BootRec* b) Word —hone— 199
SimpleExecBssSizgBootRec* b) Word —none— 200
SimpleExecBssVstart (BootRec* b) Word —nhone— 199
SimpleExecCmdline (BootRec* b) char* —none— 200
SimpleExecDataPstart (BootRec* b) Word —hone— 199
SimpleExecDataSize(BootRec* b) Word —none— 199
SimpleExecDataVstart (BootRec* b) Word —nhone— 199
SimpleExecFlags (BootRec* b) Word —none— 200
SimpleExeclInitiallP (BootRec* b) Word —nhone— 200
SimpleExecLabel (BootRec* b) Word —none— 200
SimpleExecSet Flags (BootRec* b, Word w) void —nhone— 200
SimpleExecSet Label (BootRec* b, Word w) void —none— 200
SimpleExecTextPstart (BootRec* b) Word —hone— 199
SimpleExecTextSize(BootRec* b) Word —none— 199
SimpleExecTextVstart (BootRec* b) Word —hone— 199
SizeLog2(Fpage f) Word —none— 37
Size(Fpage f) Word —nhone— 37
Sleep(Time t) void IPC 64
SmallSpace(Word location, size) Word —hone— 96
SndBase(Grantltem g) Word —none— 53
SndBase(Mapltem m) Word —none— 52
SndFpage(Grantltem g) Fpage —none— 53
SndFpage(Mapltem m) Fpage —hone— 52
SpaceControl (Threadld SpaceSpecifier, Word control, Fpage KernellnteBPACECONTROL 43
facePageArea, UtcbArea, Threadld Redirector, Word&®tmhtrol) Word

SpeculativeMemoryWord const —n/a— 124

EXCHANGEREGISTERS 21
KECHANGEREGISTERS 21
XEHANGEREGISTERS 21
XEHANGEREGISTERS 21
XEHANGEREGISTERS 21

Start (Threadld t) void

Start (Threadld t, Word sp, ip) void

Start (Threadld t, Word sp, ip, flags) void

Stop (Threadld t) ThreadState

Stop (Threadld t, Word& sp, ip, flags) ThreadState

StoreBRs(int 4, k, Word& [k]) void —none— 11
StoreBRs(int 4, k, Word& [k]) void —hone— 58
StoreBR (int ¢, Word& w) void —nhone— 11
StoreBR (int ¢, Word& w) void —hone— 58
StoreMRs (int 4, k, Word& [k] w) void —nhone— 11
StoreMRs (int 4, k, Word& [k] w) void —hone— 50
StoreMR (int 4, Word& w) void —nhone— 11
StoreMR (int 4, Word& w) void —hone— 50
Store (MsgTagt, Msg& msg) void —nhone— 49
StringltemsAcceptor Acceptor const —nla— 57
Stringltems (Acceptor a) Bool —hone— 58
Stringltem (int size, void* address) Stringltem —none— 55
Stringltem (Stringltemé& s) Bool —hone— 55
Stringltem data type —nla— 55
Substrings (Stringltemé& s) Word —hone— 55
Substring (Stringltemé& s, Word n) void* —nhone— 55

SystemClock() Clock SrsTEMCLOCK 27

TABLE OF PROCS, TYPES, AND CONSTANTS 209

used system call page

ThreadControl (Threadld dest, SpaceSpecifier, Scheduler, Pager, void* UtcbLodatREADCONTROL 24
tion) Word

ThreadldBits (void* Kernellnterface) Word —none— 8
ThreadldSystemBasgvoid* Kernellnterface) Word —none— 8
ThreadldUserBase(void* Kernellnterface) Word —none— 9
Threadld data type —n/a— 15
ThreadNo (Threadld t) Word —none— 15
ThreadState data type —n/a— 21
ThreadSwitch (Threadld dest) void WREADSWITCH 30
ThreadWasHalted (ThreadState s) Bool —nhone— 21
ThreadWaslpcing (ThreadState s) Bool —nhone— 21
ThreadWasReceiving(ThreadState s) Bool —nhone— 21
ThreadWasSending(ThreadState s) Bool —nhone— 21
Timeouts (Time SndTimeout, RcvTimeout) Word —nhone— 65
TimePeriod (Word64 microseconds) Time —none— 28
TimePoint (Clock at) Time —nhone— 29
Timeslice (Threadld dest, Time & ts, Time & tq) Word —nhone— 33
Time data type —n/a— 28
TypedWords (Msg Tag t) Word —nhone— 48
Type (BootRec* BootRec) Word —hone— 197
Type (MemoryDesc& m) Word —none— 9
UncacheableExportedMemoryWord const —n/a— 114
UncacheableMemoryWord const —nla— 114
UncacheableMemoryWord const —n/a— 172
UncacheableMemoryWord const —nla— 98
UndefinedMemoryTypeWord const —n/a— 9
Unmap (Fpage f) Fpage NMAP 39
Unmap (Word n, Fpage& [n] fpages) void NmAP 39
Unmap (Word control) void WNMAP 39
UntypedWordsAcceptor Acceptor const —n/a— 57
UntypedWords (Msg Tag t) Word —none— 48
UseDefaultCacheLineAllocationCacheAllocationHint const —n/a— 113
UseDefaultCacheLineAllocationCacheAllocationHint const —n/a— 171
UseDefaultCacheLineAllocationCacheAllocationHint const —n/a— 55
UseDefaultCacheLineAllocationCacheAllocationHint const —n/a— 97
UserDefinedHandle() Word —none— 17
UserDefinedHandle(Threadld t) Word ECHANGEREGISTERS 20
UtcbAlignmentLog2 (void* Kernellnterface) Word —none— 9
UtcbAreaSizelLog2(void* Kernellnterface) Word —none— 9
UtcbSize(void* Kernellnterface) Word —none— 9
Version (Threadld t) Word —none— 15
Wait (Threadld& from) MsgTag pC 64
Wait (Time RcvTimeout, Threadld& from) MsgTag Pt 64
WaseXecutedFpage f) Bool —hone— 40
WasReferenced Fpage f) Bool —none— 40
WasWritten (Fpage f) Bool —none— 40
Writable Word const —n/a— 36
WriteBackMemory Word const —nla— 114
WriteBackMemory Word const —n/a— 124
WriteBackMemory Word const —n/a— 172
WriteBackMemory Word const —n/a— 98
WriteCoalescingMemory Word const —n/a— 114
WriteCombiningMemory Word const —nla— 172
WriteCombiningMemory Word const —n/a— 98
WriteProtectedMemory Word const —nla— 172
WriteProtectedMemory Word const —nla— 98
WriteThroughMemory Word const —n/a— 124
WriteThroughMemory Word const —n/a— 172
WriteThroughMemory Word const —n/a— 98
XferTimeouts () Word —none— 17
Yield () void THREADSWITCH 30

ZeroTime Time const —n/a— 28

210 TABLE OF PROCS, TYPES, AND CONSTANTS

Index

1=, 15, 26, 29

+, 26, 29, 37, 48, 56, 57
+=, 29, 37, 48, 55-57
—, 26, 29, 37,57

— (ignored), ix
-=,29,37,57

<, 26,29

<=, 26, 29

= (unchanged), ix
==, 15, 26, 29, 48, 56
>, 26,29

>=, 26, 29

~ (undefined), ix

0o, seesigma0

Abortlpcandstop 21

AbortReceiveand.stop 21

AbortSendand stop 21

Accept 58

Accepted58

acceptor, 57

ACPIMemoryTypgell5

ActualSenderl?7, 65

Address37

address space
creation/deletion, 41
initial, 81

AllocateNewCacheLing87, 171

AllocateOnlyNewL1CachelLingg7, 171

anylocalthread 15

anythread 15

ApiFlags 8

ApiVersion 8

Append 49, 58
ArchitectureSpecificMemory Ty
Associatelnterrupt24

Bootinfg 9
BootIinfa EFITables 199
BootInfa Entries 197
BootInfa FirstEntry, 197
BootinfaModule 199
BootInfaMultiboot, 199
BootInfa SimpleExec199
BootInfa Size 197
BootInfa Valid, 197
booting, 84-86

alpha, 148

amd64, 175

arm, 194

ia32, 101

mips64, 160

powerpc, 128

ppc64, 140
BootLoaderSpecificMemory Ty

BR, seebuffer registers

buffer registers, 57
alpha, 143
amd64, 163-164
arm, 187
ia32, 89-90
ia64, 105
mips64, 151
powerpc, 119
ppc64, 131
sparc64, 179

cacheability, 54, 97, 98, 113, 114, 124, 137, 157, 171,

172,191
CacheAllocationHint56
CacheNonTemporalAllLevel$13
CacheNonTemporall, 113
CacheNonTemporall,213
CachingEnabledMemory 24
CachinglnhibitedMemoryl24
Call, 63, 64
Clear, 49, 58
clock, 26

reading, 27
Clr_CopFlag 17, 69
CompleteAddressSpa&y
CompundString55

convenience programming interface, viii

ConventionalMemoryTyp8&
coprocessors, 69

Deassociatelnterrupt4
debug registers, 100, 174
DedicatedMemoryTyp®
DefaultMemory 73, 98, 114, 124, 172
DisablePreemption34
DisablePreemptionFaultExceptip84
DoNotAllocateNewCacheLingg7, 171

EFI_MemdescSiz&00
EFI_MemdescVersiqr200
EFI_Memmap 200
EFI_MemmapSize00
EFI_Systab200
EnablePreemptior34
EnablePreemptionFaultExceptipd4
endian, 3

ErrinvalidParam 33, 73
ErrinvalidScheduler24
ErrinvalidSpace 24, 43
ErrinvalidThread 21, 24, 33
ErrKipArea, 43

ErrNoMem 24

ErrNoPrivilege 24, 33, 43, 71, 73

ErrorCode 17, 21, 24, 33, 43,64, 71, 73

ErrUtcbAreq 24, 43

212

exception
handling, 68
message
amdo64, 173
arm, 193
ia32, 99
ia64, 116
mips64, 158
powerpc, 125
ppc64, 138
protocol, 80
ExceptionHandlerl7, 68
ExchangeRegister20
eXecutable37
ExternalFreq 10

Feature 9

Flush 40

Fpage 37

fpage, 36-37
mapping, 59
receiving, 57
unmapping, 36, 38—-40

FpagelLog237

FullyAccessible37

generic binary interface, viii

generic bootinfo, 195-200
data structure, 195-196
generic record, 196-197

generic programming interface, viii

Get 49, 50

GetStatus40

global thread ID, 14

Globalld, 15, 20

GlobalMemory 124

Grantltem 53

GuardedMemory124

High, 9

include files, x
IntendedReceived 7, 64
InternalFreq 10
interrupt
association, 22
thread ID, 14
10 fpage, 95, 170
loFpage 95, 170
loFpagelLog?295, 170
IPC, 59-65
aborting, 18
cross cpu, 62
propagation, 60
Ipc, 63
IpcFailed 64
IpcPropagated64
IpcRedirected64
IpcSucceeded4
IpcXcpy 64
IsGloballd 15
IsLocalld 15
IsNilFpage 37
IsNilThread 15
IsVirtual, 9

kernel features, 5

ia32, 94
kernel interface page
location, 41
kernel interface page, 2-10
data structure, 2—6
retrieving, 7-10
KernelGenDate8
Kernelld 8
Kernellnterface 8
KernelSupplier8
KernelVersion8
KernelVersionString9
KipAreaSizeLog29

Label 48, 49
LargeSpacg96
Lcall, 64

Lipc, 63

lipc, 59

Load 49

LoadBR 11, 58
LoadBRs11, 58
LoadMR 11, 50
LoadMRs 11, 50
local ipc, 59

local thread ID, 14
Localld, 15, 20
LocalMemory 124
logical interface, viii
Low, 9

LreplyWait 64

MapGrantltems57, 58
Mapltem 51, 52
MBI_Address200
memory descriptor, 5-6, 85-86
iab4, 115
MemoryContro| 73
MemoryDesc9
message registers, 46—47
alpha, 142-143
amd64, 162-163
arm, 186-187
ia32, 89
ia64, 104-105
mips64, 150-151
powerpc, 118-119
ppc64, 130-131
sparc64, 178-179
messages
generating, 46-50
model specific registers, 100, 174
Module Cmdling 199
Module Size 199
Module Start 199
MR, seemessage registers
MsgTag 48, 49
MyGloballd 15, 17
MyLocalld 15, 17
Myself 15, 17

NaTPageMemoryl14
Never 28

Next 197

Nilpage 37

Niltag, 48

nilthread, 15

INDEX

NoAccess37
NumMemoryDescriptors
NumProcessors8

page
access rights, 3, 36, 51, 53, 78, 82
changing, 38, 51, 53
inspecting, 39
attributes, 82
amd64, 172
arm, 191
ia32, 98
ia64, 114
mips64, 157
powerpc, 124
ppc64, 137
size, 3
pagefault
protocol, 78
Pager, 17, 20
pager, 78
changing, 17, 20, 23
PageRights8
PageSizeMasl8
PAL procedure calls, 106
PAL Call, 106
PCI Config fpage, 112
PCI Configuration Space
ia64, 106, 112
PCIConfigFpagel112
PCIConfigFpagelLog2112
preemption, 31, 34
protocol, 79
PreemptionPending34
privileged threads, ix
ProcDes¢ 9
processor-specific binary interface, viii
ProcessorContrgl71
ProcessorNo, 16
ProcessorNpl17
propagation, 60
Put, 49, 50

RcvWindow58
RDMSR, 100, 174
Readable36
ReadeXecOn)y87
ReadPrecision9
Receive64
redirection, 42, 60
Reply 64
ReplyWait 64
ReservedMemoryType
Rights 37

SAL procedure calls, 106
SALCall, 106
SALPCI_ConfigRead106
SALPCI_ConfigWrite 106
SameThreadd5
Schedule33
SchedulePrecisiqrd
segments, 100, 174
Send 64

send base, 51

sensitive prio, 31
SetCopFlag 17, 69

213

SetExceptionHandlerl7, 68
SetLabel 49
SetMsgTag 48, 49
SetPageAttribute 73
SetPager, 17, 20
SetPagesAttributes73
SetPreemptionDelay33
SetPriority, 33
SetProcessorNp33
SetPropagation 65
SetRights 37
SetTimeslice 33
SetUserDefinedHandlel7, 20
SetVirtualSender17, 65
SetXferTimeouts17
SharedMemoryTypé®
sigmao, 81

protocol, 81-83
SimpleExedBssPstart199
SimpleExedssSize200
SimpleExedBssVstart199
SimpleExedcCmdling 200
SimpleExedataPstart 199
SimpleExedataSize 199
SimpleExedataVstart 199
SimpleExed-lags 200
SimpleExednitiallP, 200
SimpleExed abel 200
SimpleExeSetFlags 200
SimpleExecSetLabel 200
SimpleExecTextPstart 199
SimpleExecTextSize199
SimpleExecTextVstarf 199
Size 37
SizelL0g237
Sleep 64
small spaces, 96
SmallSpacegd6
SndBasg52, 53
SndFpage52, 53
SpaceContrgl43
SpeculativeMemory 24
Start, 21
Stop 21
Storeg 49
StoreBR11, 58
StoreBRs11, 58
StoreMR 11, 50
StoreMRs11, 50
Stringltem 55
Stringltems58
StringltemsAcceptob7
strings, 54-56

receiving, 57
Substring 55
Substrings55
system thread, 14
system thread, 64
system-call links, 5

alpha, 144-147

amd64, 165

arm, 188

ia32, 91

ia64, 107

mips64, 152—-156

powerpc, 120-123

214

ppc64, 132

sparc64, 180
SystemBase, 4
SystemClocgk27

TCR, seethread control registers
thread

creation, 22

halting, 18

ID, 14

id, 15, seethread ID

migration, 32

priority, 31

privileged, ix

startup protocol, 76

state, 21, 32

version, 14, 22
thread control registers, 16-17

alpha, 142

amd64, 162

arm, 186

ia32, 88

ia64, 104

mips64, 150

powerpc, 118

ppc64, 130

sparc64, 178
thread ID, 14-15

retrieving, 17, 20
ThreadContro| 24
ThreadldBits 8
ThreadldSystemBas@é
ThreadldUserBase
ThreadNg 15
ThreadSwitch30
ThreadWasHalted21
ThreadWaslpcing21
ThreadWasReceiving1
ThreadWasSending1
time, 28—-29
time quantum, 31
Timeouts65
TimePeriod 28
TimePoint 29
Timeslice 33
timeslice, 31

donation, 30
Type 9, 197
TypedWords48

UncacheableExportedMemory/14

UncacheableMemory8, 114, 172

UndefinedMemoryTyp®
Unmap 39
UntypedWords48
UntypedWordsAcceptps7
upward compatibility, ix

UseDefaultCacheLineAllocatiob5b, 97, 113, 171

UserBase, 4
UserDefinedHandle, 16, 19
UserDefinedHandlgl7, 20
using the API, x
UTCB

location, 41

size, 4, 23, 41
UtcbAlignmentLog29
UtcbAreaSizelLog®

UtcbSize9

Version 15
virtual registers, 11

Wait, 64

WaseXecutedtO
WasReferenced0

WasWritten40

Word ix

Word16 ix

Word32ix

Word64 ix

Writable, 36

WriteBackMemory98, 114, 124, 172
WriteCoalescingMemoryl 14
WriteCombiningMemory98, 172
WriteProtectedMemory98, 172
WriteThroughMemory98, 124, 172
WRMSR, 100, 174

XferTimeouts17
Yield, 30

ZeroTime 28

INDEX

	Title Page
	Contents
	About This Manual
	Introductory Remarks
	Understanding This Document
	Notation
	Using the API
	Revision History

	1 Basic Kernel Interface
	1.1 Kernel Interface Page
	1.2 KernelInterface
	1.3 Virtual Registers

	2 Threads
	2.1 ThreadId
	2.2 Thread Control Registers (TCRs)
	2.3 ExchangeRegisters
	2.4 ThreadControl

	3 Scheduling
	3.1 Clock
	3.2 SystemClock
	3.3 Time
	3.4 ThreadSwitch
	3.5 Schedule
	3.6 Preempt Flags

	4 Address Spaces and Mapping
	4.1 Fpage
	4.2 Unmap
	4.3 SpaceControl

	5 IPC
	5.1 Messages And Message Registers (MRs)
	5.2 MapItem
	5.3 GrantItem
	5.4 StringItem
	5.5 String Buffers And Buffer Registers (BRs)
	5.6 Ipc

	6 Miscellaneous
	6.1 ExceptionHandler
	6.2 Cop Flags
	6.3 ProcessorControl
	6.4 MemoryControl

	7 Protocols
	7.1 Thread Start Protocol
	7.2 Interrupt Protocol
	7.3 Pagefault Protocol
	7.4 Preemption Protocol
	7.5 Exception Protocol
	7.6 Sigma0 RPC protocol
	7.7 Generic Booting

	A IA-32 Interface
	A.1 Virtual Registers
	A.2 Systemcalls
	A.3 Kernel Features
	A.4 IO-Ports
	A.5 Space Control
	A.6 Cacheability Hints
	A.7 Memory Attributes
	A.8 Exception Message Format
	A.9 Processor Mirroring
	A.10 Booting

	B IA-64 Interface
	B.1 Virtual Registers
	B.2 PAL and SAL Access
	B.3 Systemcalls
	B.4 PCI Configuration Space
	B.5 Cacheability Hints
	B.6 Memory Attributes
	B.7 Memory Descriptors
	B.8 Exception Message Format

	C PowerPC Interface
	C.1 Virtual Registers
	C.2 Systemcalls
	C.3 Memory Attributes
	C.4 Exception Message Format
	C.5 Processor Mirroring
	C.6 Booting

	D PowerPC64 Interface
	D.1 Virtual Registers
	D.2 Systemcalls
	D.3 Memory Attributes
	D.4 Exception Message Format
	D.5 Booting

	E Alpha Interface
	E.1 Virtual Registers
	E.2 Systemcalls
	E.3 Booting

	F MIPS-64 Interface
	F.1 Virtual Registers
	F.2 Systemcalls
	F.3 Memory Attributes
	F.4 Exception Message Format
	F.5 Booting

	G AMD64 Interface
	G.1 Virtual Registers
	G.2 Systemcalls
	G.3 IO-Ports
	G.4 Cacheability Hints
	G.5 Memory Attributes
	G.6 Exception Message Format
	G.7 Processor Mirroring
	G.8 Booting

	H SPARC v9 Interface
	H.1 Virtual Registers
	H.2 Systemcalls

	I ARM Interface
	I.1 Virtual Registers
	I.2 Systemcalls
	I.3 Memory Attributes
	I.4 Space Control
	I.5 Exception Message Format
	I.6 Booting

	J Generic BootInfo
	J.1 Generic BootInfo
	J.2 BootInfo Records

	K Development Remarks
	K.1 Exception Handling

	Table of Procs, Types, and Constants
	Index

