
IDL4 Version 1.0.0
User’s Manual

Andreas Haeberlen
University of Karlsruhe
haeberlen@ira.uka.de

April 2003

Preface

This manual is still under construction. More information on the technology used in IDL4 can be found in
[3]; for more details on CORBA IDL, please read [1] or one of the countless books on CORBA, e.g. [7].

3

Contents

1 Writing interface definitions 7
1.1 Basic structure . 7
1.2 Types . 8

1.2.1 Basic types . 8
1.2.2 Constructed types . 9

1.3 Exceptions . 11
1.4 Constants . 11
1.5 Attributes . 12

1.5.1 Oneway functions . 12
1.5.2 Function identifiers . 12
1.5.3 Mapping fpages . 13

1.6 Advanced features . 13
1.6.1 Local functions . 13
1.6.2 Type import from C++ code . 13
1.6.3 Disabling the memory allocator . 14
1.6.4 Receiving kernel messages . 14

2 Working with generated code 15
2.1 Compiling the IDL file . 15
2.2 Sending requests . 15
2.3 Processing requests . 16

3 Quick reference guide 19
3.1 Invoking IDL4 . 19

3.1.1 Overall Options . 19
3.1.2 Warning Options . 19
3.1.3 Debugging Options . 20
3.1.4 Miscellaneous Options . 20
3.1.5 Preprocessor Options . 21
3.1.6 Target Options . 21

4 Appendix 23
4.1 Keywords . 23
4.2 Supported platforms . 23
4.3 Supported types . 24

5

Chapter 1

Writing interface definitions

1.1 Basic structure

The specification in an IDL file describes one or more interfaces, which in turn may contain one or more
methods. Here is an example:

module storage {
interface textfile {

void readln(
inout short pos,
out string line

);
void writeln(

inout short pos,
in string line

);
int get_pos();

};
};

library storage {
interface textfile {

void readln(
[in, out] short *pos,
[out, string] char **line

);
void writeln(

[in, out] short *pos,
[in, string] char **line

);
int get_pos();

};
};

IDL4 supports two specification languages, CORBA IDL and DCE IDL, so most example code is shown
in both languages; the CORBA code is always on the left side.

Note that the syntax is very similar to C/C++, especially in the case of DCE IDL. The most important
difference is that every parameter has a directional attribute (in , inout or out). This is used to indicate
whether the parameter contains

• input data, which must be copied from client to server,

• output data, which is returned by the server, or

• a combination of both

Another difference is the presence of special data types likestring , which have additional semantics;
for example,string stands for a sequence of characters with a trailing zero, andsequence denotes an
array of variable length. These special types are explained later in this chapter.

Finally, it is possible to avoid naming conflicts by putting interfaces into modules. For example, a
network driver and a postal application might both want to provide apacket interface, possibly with
different methods; this conflict can be resolved by using two separate modules.

7

1.2 Types

1.2.1 Basic types

Integers

IDL4 supports the following CORBA integer types:

Type name Size Value range
unsigned short 16 bit 0..65535
short 16 bit -32768..32767
unsigned long 32 bit 0..4294967295
long 32 bit -2147483648..2147483647
unsigned long long 64 bit 0..18446744073709551615
long long 64 bit -9223372036854775808..9223372036854775807

The typeint is also supported, although it is deprecated because the standard does not define its size
(32 or 64 bit). Currently, it has 32 bit on all platforms.

Floating point

The following floating point types are available:

Type name Size Value range Precision
float 32 bit 3.403 · 1038 6 digits
double 64 bit 1.798 · 10308 15 digits
long double 80 bit 1.1897 · 104932 18 digits

Characters

IDL4 supports both the 8-bitchar and the 16-bitwchar data types. The typeunsigned char may
also be used, but it is deprecated. The reason is that in CORBA IDL, characters have special semantics; for
example, they might be translated to a different character set by the marshalling code.

If you need an 8-bit data type for binary data, you should use theoctet type.

Flexpages

IDL4 supports the L4 mapping primitives by providing a special type namedfpage . This type corresponds
to the flexpage type of the respective kernel interface; its size is platform-dependent.

Miscellaneous

Type name Size Possible values
boolean 1 bit true , false
octet 8 bit 0..255
void undefined none

Thevoid data type may only be used for return values or as the base type for a pointer. TheObject
andany types, which are also defined by CORBA, are not supported.

1.2.2 Constructed types

Alias types

You can usetypedef to create your own types:

typedef unsigned short word_t;
typedef string<40> max40char_t;
typedef long array_t[4][3];

typedef unsigned short word_t;
/* Bounded strings not supported */
typedef long array_t[4][3];

IDL4 maps the types in an interface description to the target language and adds a definition to the header
files it produces. Thus, you can also use these types in your own code.

Sequences

CORBA provides a special type for transferring variable-length data, thesequence type. A sequence has
a base type (e.g.char) and, optionally, a size bound. Consider the following example:

typedef sequence<float, 7> some_t;
typedef sequence<char> another_t;

/* DCE IDL does not support
the sequence type */

The first line defines an array offloat s that does not contain more than seven members (but may
contain less); the second line defines a character array of arbitrary size. Note that sequences may only
appear intypedef s, not directly as an argument type.

When using sequences, please consider that IDL4 needs to preallocate buffer space for them. Providing
a tight size bound saves memory and considerably improves performance.

Note that the sequence mapping in IDL4 differs from the one specified in [2]. In the IDL4 mapping,
the programmer isalwaysresponsible for the storage allocated for output sequences; the release flag is not
supported. Also, output sequence parameters do not use double indirection; instead, they are treated just
like ordinary structs.

Arrays

In DCE, there is no single type for variable-length arguments. Instead, size and location of the data are
specified independently. Consider the following example:

/* CORBA does not support
the length_is attribute */

interface foo {
void bar(

[in] int len,
[in, length_is(len)] float *addr

);
void xyz(

[in, length_is(5)] short *addr
);

};

The stub code forbar transferslen floating point numbers, starting ataddr , whereas the code for
xyz always transfers five 16-bit integers.

On the server side, buffer space is allocated and freed by the stub code. In particular, forout arguments,
the stub preallocates enough buffer space and passes a pointer to it when the function is invoked. Neverthe-
less, your code is not required to use this buffer; it can save one copy operation by returning a pointer of its
own.

On the client side, the stub allocates buffers for output values, but does not free them. It is your respon-
sibility to invokeCORBA_free() for every array that is returned by the server.

Note that the argument tolength_is denotes the number of elements,not the size in bytes!

Structs

Structs are used exactly like their counterparts in C/C++:

struct some_t {
short a[4], b;
float c;

};

struct some_t {
short a[4], b;
float c;

};

The stub allocates and frees buffers for the server; on the client side, this is the responsibility of the user.
However,CORBA_alloc() is not used because structs have a fixed size; instead, for anout parameter,
the user supplies a pointer to an existing struct, which is then overwritten by the stub.

Unions

Unlike C/C++-style unions, a CORBA-compliant union needs a special member, the discriminant, which is
used to decide which type the union currently contains. This is important because different types are usually
marshalled differently. Consider the following example:

union U switch (int) {
case 1 : long x;
case 2 :
case 3 : string s;
default: char c;

};

union U switch (int a) {
case 1 : long x;
case 2 :
case 3 : string s;
default: char c;

};

If the discriminant, which is always named_d in CORBA, has the value 1, then one 32-bit value needs to
be copied. When_d is 2 or 3, however, the union contains a pointer, which must be dereferenced, resulting
in a string to be transferred.

Note: Unions are not yet available in the current IDL4 release! However, C/C++-style unions are
supported. Such a union is always copied directly and entirely; thus, it may not contain types with special
semantics, such as strings.

Strings

CORBA supports 8-bit and 16-bit strings with an optional length bound; strings are always terminated by
the value zero. Consider the following example:

typedef string<20> s20_t;

interface foo {
void bar(

in string a,
inout s20_t b,
out wstring<40> c

);
};

/* No bounded strings in DCE */

interface foo {
void bar(

[in, string] char *a,
[in, out, string] char **b,
[out, string] short **c

);
};

The first argument tofoo::bar is an 8-bit string of arbitrary length, whereas the second argument
may contain at most 20 characters; the third argument is a 16-bit string of not more than 40 elements. The
first two arguments are terminated by a zero byte, the third one ends with a 16-bit zero value.

On the server side, strings are managed by the stubs. For output values, sufficient buffer space is al-
located before the method is invoked; however, the implementation is free to move the pointer to another
buffer. On the client side, the stubs allocate output buffers usingCORBA_alloc() , but do not free them;
it is the responsibility of the user to invokeCORBA_free() for each one.

Fixed point

CORBA includes a special type for fixed-point, BCD-coded numbers. This type is not supported by IDL4 .

Bitfields

IDL4 supports C/C++-style bitfields. These are allowed neither by CORBA nor by DCE and should be used
with care, because they are highly platform-dependent. Consider the following example:

struct msgdope_t {
long cc : 8;
long parts : 5;
long mwords : 19;

};

struct msgdope_t {
long cc : 8;
long parts : 5;
long mwords : 19;

};

1.3 Exceptions

Currently, only the CORBA exception handling is supported by IDL4 . In CORBA, there are two classes of
exceptions: system and user-defined. System exceptions may be raised by any method (e.g. when the IPC
fails or a timeout happens), whereas user-defined exceptions must be explicitly specified by the interface
description. Consider the following example:

interface file {
exception access_denied {};
exception not_found {};

void open(in string name)
raises (access_denied,

not_found);
};

/* DCE exception handling
not supported */

This means that the methodfile::open can, in addition to system exceptions, raise two user-defined
exceptions namedaccess_denied andnot_found .

CORBA also allows exceptions to contain additional information; for example, it may be useful to add
a message for the user, or details on how to correct the error. Here is an example:

interface file {
exception access_denied {

string reason;
int missing_privileges;

}

void open(in string name)
raises (access_denied);

};

/* DCE exception handling
not supported */

Note: Currently, IDL4 only supports exceptions without additional information

1.4 Constants

It is possible to define constants within an interface. The constants are added to the generated header files,
but may also be used within the specification itself. Consider the following example:

interface foo {
const int addr_size = 6;
struct hwaddr {

octet mac[addr_size];
};

};

interface foo {
const int addr_size = 6;
struct hwaddr {

unsigned small mac[addr_size];
};

};

This causes a constant namedaddr_size to be exported to the client header file; also, the struct
hwaddr is declared to be six bytes long.

1.5 Attributes

1.5.1 Oneway functions

Usually, a remote procedure call consists of two phases: A send phase, in which the client sends a message
to the server, and a receive phase, in which it waits for a reply. However, in some cases, it is necessary
to omit the second phase, e.g. when the request is to be processed asynchronously, or when no reply is
possible.

Here is how this behaviour can be specified:

interface foo {
oneway void bar(in int a);

};

interface foo {
[oneway] void bar([in] int a);

};

Oneway methods must not haveinout or out arguments; also, they may neither return a value nor
raise any exceptions. Note that when the method returns on the client side, the absence of exceptions does
not mean that the request has been processed successfully; it only indicates that the request transfer did not
fail.

1.5.2 Function identifiers

As interfaces can contain multiple methods, and servers may implement multiple interfaces, the server must
be able to tell from the request which method it is intended for. In IDL4 , this is accomplished with numeric
function IDs.

A function ID has two parts: An interface number and a method number. The interface number is
identical for all methods in an interface, whereas different interfaces may be assigned the same number. The
method number must be unique within an interface.

By default, IDL4 assigns the number 0 to all interfaces; this implicitly assumes that different interfaces
are implemented by different threads. If this is not the case, you need to assign the interface numbers
manually. The allowed range for interface numbers is platform dependent; typically, numbers of up to 1.000
are supported. Here is an example:

[uuid(5)]
interface foo {

void bar(in int a);
};

[uuid(5)]
interface foo {

void bar([in] int a);
};

You can also change the assignment of method numbers by applying theuuid attribute to individual
methods. However, this is rarely necessary.

1.5.3 Mapping fpages

The L4 IPC primitive supports mapping, which is essentially the transfer of a complete memory page from
one address space to another. As a result, the page is shared by both address spaces; write operations in
either of them are instantly visible in both. Also, the page may cover the same address range in both spaces,
but this is not mandatory.

IDL4 supports this primitive with a special data type, thefpage , which describes a memory region; see
[4, 5, 8] for more details.fpage s are implicitly mapped during message transfer; the mapping persists and
is not revoked upon completion of the call. Consider the following example:

interface pager {
[uuid(0)]
void pagefault(

in int addr, in int ip,
out fpage f

);
};

interface pager {
[uuid(0)]
void pagefault(

[in] long addr, [in] long ip,
[out] fpage *f

);
};

This defines a methodpagefault which takes two arguments, the fault addressaddr and the instruc-
tion pointerip ; the server replies with an fpagef which is to be mapped to the client address space.

1.6 Advanced features

1.6.1 Local functions

Some L4 microkernels support a special IPC primitive, the local IPC or lipc, which is optimized for intra-
address space calls [6]. This feature can be used with IDL4 as follows:

local interface foo {
short bar(

in short a,
in short b

);
};

[local] interface foox {
short bar(

[in] short a,
[in] short b

);
};

The local attribute indicates that the methods in this interface willonly be called via lipc. This
permits IDL4 to apply considerably more optimizations; for example, lipc will be used by both client and
server stubs, and parameters may be passed by reference. Possible applications include semaphore servers
or dispatcher threads, which are used for distributing incoming requests to multiple worker threads in the
same address space.

Note: This is an experimental feature in the current release!

1.6.2 Type import from C++ code

Usually, interface specifications should contain definitions for the data types they use. However, it may
sometimes be convenient to import additional data types from the application code. IDL4 supports this with
a DCE-styleimport statement:

interface foo {
import "l4/x86/types.h";

void bar(in l4_taskid_t tid);
};

interface foo {
import "l4/x86/types.h";

void bar([in] l4_taskid_t tid);
};

This makes available the types defined inl4/x86/types.h to all the methods in interfacefoo ;
IDL4 contains a gcc-compatible C++ parser for this purpose. At compile time, the header file is scanned, all
global type definitions are imported and converted into IDL.

Note that unlike types defined directly in IDL, the generated header files do not contain definitions for
imported types; instead, an#include directive referring to the original file is added.

1.6.3 Disabling the memory allocator

By default, IDL4 uses CORBA-style dynamic memory allocation, i.e. it callsCORBA_alloc to reserve
buffers for variable-length output values. In some cases, however, the data is expected at a specific location,
which requires an additional copy on the client side.

To avoid this problem, you can use theprealloc attribute. Consider the following example:

interface foo {
typedef sequence<long, 100> buf;
void bar(

[prealloc] out buf x
);

};

interface foo {
void bar(

[out, prealloc, length_is(len)]
char **data, [out] short *len

);
};

No dynamic buffers are allocated in either case. Instead, you must explicitly provide a buffer by initial-
izing x._buffer or *data , respectively. Also, you must supply the size of the buffer inx._maximum
(or *len in the DCE example).

While prealloc should be used for individual arguments, a command line option is also available
which disables dynamic allocation for the entire file.

1.6.4 Receiving kernel messages

In the L4 world, exceptions are mapped to IPCs, which are sent by the kernel on behalf of the faulting ap-
plication, e.g. to its pager. These messages can be received by IDL4 stubs when special interface definitions
are used.

The following interface handles X0-style page faults, which are e.g. generated by the Hazelnut kernel:

interface pager {
[uuid(0)] void pagefault(

in long addr,
in long ip,
out fpage p

);
};

interface pager {
[uuid(0)] void pagefault(

[in] long addr,
[in] long ip,
[out] fpage *p

);
};

Here is how a V4 page fault is specified (e.g. for the Pistachio kernel):

interface pager {
[kernelmsg(idl4::pagefault)]
void pagefault(

in long addr,
in long ip,
in long privileges,
out fpage p

);
};

interface pager {
[kernelmsg(idl4::pagefault)]
void pagefault(

[in] long addr,
[in] long ip,
[in] long privileges,
[out] fpage *p

);
};

Note that in this case, the fault type (i.e. the requested privileges) is provided as a separate argument,
whereas in the upper example, it is encoded in the lower two bits of the fault address.

Chapter 2

Working with generated code

2.1 Compiling the IDL file

IDL4 can generate three types of output from a given interface description:

• Client stubs, which are linked with every client application, i.e. every application that needs to invoke
methods from the interface

• Server stubs, which are used by every server that needs to implement the interface.

• Server templates, which essentially contain a dummy implementation for the interface. They can be
used as a starting point for writing a server.

Usually, the first two kinds of output are generated during the compilation process, whereas the third is
only generated once and then extended with user code. You can select the kind of output by supplying-c ,
-s or -t on the command line, respectively. For example,

idl4 -ix0 -pia32 -ffastcall -s pager.idl -h pager-server.h

generates a header file calledpager-server.h which contains all the server stubs for methods in
pager.idl . Also, the X0 backend for the IA32 platform is selected, e.g. because the application will
use the Hazelnut kernel and run on a Pentium-III processor. Finally, thefastcall option is given, which
allows IDL4 to use nonstandard system calls, in this case, thesysenter instruction.

2.2 Sending requests

As specified by the CORBA C language mapping [2], client stubs have two implicit parameters (i.e. param-
eters that are not defined by the interface). Consider the following example:

module storage {
interface textfile {

void readln(
inout short pos,
out string line

);
};

};

library storage {
interface textfile {

void readln(
[in, out] short *pos,
[out, string] char **line

);
};

};

15

When this definition is compiled with the-c option, IDL4 creates the following client stub:

void storage_textfile_readln(
storage_textfile _service,
CORBA_short *pos, CORBA_char **line,
CORBA_Environment *_env

)

The first parameter,_service , contains the thread ID of the server where the request is to be sent.
Unlike other CORBA code generators, IDL4 does not provide a way to obtain this automatically; it assumes
that this functionality is implemented by your system.

The last parameter is a pointer to aCORBA_Environment structure. This structure contains additional
information related to the call, such as a timeout value or a memory window for receiving mappings. You
must initialize this structure before invoking the call.

An invocation ofreadln could look like this:

#include <storage_client.h>
void test(l4_threadid_t server) {

CORBA_Environment env = idl4_default_environment;
short pos = 100;
char *buf;

storage_textfile_readln(server, &pos, &buf, &env);

switch (env._major) {
case CORBA_SYSTEM_EXCEPTION:

printf("IPC failed, code %d\n",
CORBA_exception_id(&env));

CORBA_exception_free(&env);
return -1;

case CORBA_USER_EXCEPTION:
printf("User-defined exception");
CORBA_exception_free(&env);
return -1;

case CORBA_NO_EXCEPTION:
break;

}

printf("Read: %s\n", buf);
CORBA_free(buf);

}

Note howenv is initialized with an IDL4 -supplied default value, which means a timeout of infinity and
an empty receive window. Also, the example shows how environment structure can be used to determine
whether an exception occurred during the call, and what type it was. Finally, it is important to always release
storage allocated by the stubs (e.g. exceptions, output strings, ...) with the appropriate function.

2.3 Processing requests

The standard server loop, which is included in the server template, mainly consists of two macros:

• idl4_reply_and_wait , which sends any pending replies and then receives one incoming re-
quest, and

• idl4_process_request , which analyzes the request and calls the appropriate implementation
function

Between those macros, you can insert additional code, e. g. a permission check. The second macro
uses a function table to decide which function should handle the request; it takes the method number as
an argument and uses it as an index into the table. Table entries which correspond to unassigned method
numbers contain a reference to thediscard function of the interface; thus, this function is only called
when a malformed request was received.

The server template file also contains function templates for every method in the interface. For the
example interface from above, the following template is created:

IDL4_INLINE void storage_textfile_readln_implementation(
CORBA_Object _caller, CORBA_short *pos,
CORBA_char **line, idl4_server_environment *_env

)

{
/* implementation of storage::textfile::readln */

return;
}

IDL4_PUBLISH_STORAGE_TEXTFILE_READLN(
storage_textfile_readln_implementation

);

Similar to the client side, the function has two additional parameters. The first parameter,_caller ,
contains the ID of the thread that has sent the request, whereas the last parameter,_env , points to an internal
data structure. Many functions in the IDL4 runtime need a pointer to this structure, for example the function
CORBA_exception_set , which is used to raise exceptions.

Please note the macro at the end of the function. This macro makes the function accessible to the
server loop; for the optimizations to work, it is also very important that this macro is includedafter the
implementation function.

Unlike the client side, memory allocation on the server side is mostly handled by the stub code, that
is, you do not need to callCORBA_free , except if you explicitly allocated additional buffers. The stub
code preallocates a buffer for everyout value and passes a pointer to the implementation function in the
respective argument. However, for large buffers (such as strings), you can save one copy by overwriting the
pointer with another one pointing directly to the data you want to send.

If you decide not to send a reply at all, you can use theidl4_set_no_response function. In this
case, the stub code will discard anyinout or out values and skip the send phase; instead, it will directly
receive another request.

Chapter 3

Quick reference guide

3.1 Invoking IDL4

IDL4 is generally invoked in the following way:

idl4 [OPTIONS] input.idl

The following sections contain a more detailed description of the individual options.

3.1.1 Overall Options

-c
-s
-t

These options are used to control the kind of output. The following
output types are available:

• Client stubs (-c)are used by client tasks to invoke a service

• Server stubs (-s)contain functions to receive and dispatch in-
coming requests on the server side

• Server templates (-t)can be used as a starting point when im-
plementing a new service. They contain function prototypes
and a simple server loop.

-o filename.c Place code output infilename.c. Note that for some mappings, the
stub code is contained entirely in the header files.

-h filename.h Create a header file calledfilename.h. This option cannot be used
together with-t , because server templates do not include a header
file.

-v Print the version number and build date on standard output.

3.1.2 Warning Options

-Wprealloc Warn whenever a stub needs to allocate an excessive amount of heap
memory, e.g. when an unlimited output string is encountered.

-Wall All of the above ’-W’ options combined.

19

3.1.3 Debugging Options

-dtest Generate test code. When used with-t , this creates a test applica-
tion that can run as a root task on the bare microkernel. The code
creates a server for each interface in the IDL and then invokes every
operation with random parameters.

-dparanoid Add even more checks to the test code. For example, test for stack
overflow and monitor the message dopes.

-dcpp Print each input line as it is read from the C preprocessor.

-daoi Dump the abstract syntax tree generated from the IDL file.

-dcheck Generate debug output for the semantical analysis and consistency
check.

-dcast Dump the C abstract syntax tree.

-dfids Print the function ID assignment.

-dmarshal Show details about the marshalling stage.

-dgenerator Analyze the stub generator and the backend.

-dimport Generate debug info while importing C++ headers.

-dreorder Show details when reordering parameters.

-dvisual Add debug output to the server stubs.

-d All of the above.

3.1.4 Miscellaneous Options

-ffastcall Allows IDL4 to use a non-conforming IPC system call where avail-
able. The resulting code is faster, but may not be entirely compliant
with the kernel specification. For example, the X0/IA32 backend
may usesysenter to invoke the IPC system call.

-flipc Enables support for local IPC on X0-style kernels.

-fctypes Use ANSI C types instead of the platform-independent CORBA
types (likeCORBA_long).

-fomit-frame-pointer Assume the frame pointer is not used. This option must be consistent
with the corresponding gcc option.

-fuse-malloc Allows IDL4 to use dynamic memory allocation (e.g.CORBA_alloc).
This is enabled by default; if you disable it, you must preallocate
buffers forall variable-sized output parameters, such assequence
or string .

-fomit-empty-files Prevents files from being generated if they do not contain any code.
This is enabled by default.

-floop-only In server templates, removes all definitions except server loops.

-fmodules-only In server templates, generate code only for interfaces that are defined
in a module.

These options can also be disabled by using ano- prefix (e.g.-fno-fastcall).

3.1.5 Preprocessor Options

-D macro Definesmacroin the preprocessor.

-I path Addspathto the current include path. The include path is passed to
the preprocessor and is also searched when importing types.

-Wp, option Passesoptiondirectly to the preprocessor.

--with-cpp path Use another preprocessor (the default is /usr/bin/cpp)

3.1.6 Target Options

-m mapping When generating stub code, use the specified mapping (C or C++).

-i interface Produce code for the specified kernel interface.

-p platform Optimize for the specified platform (generic is allowed).

-w wordsize Specifies the word size in bits (32 or 64) where it cannot be deter-
mined from the platform, e.g. in the generic backends.

--sys-prefix path Add a prefix to all system include files

Chapter 4

Appendix

4.1 Keywords

The following strings are reserved as keywords and should not be used for identifiers:

all_caches float nocache switch
any gather noxfer TRUE
attribute import Object typedef
base_is in octet union
boolean include oneway unsigned
case inout out uuid
char int raises void
const interface readonly wchar
context l1_only ref writeable
default length_is scatter wstring
double library sequence
enum local short
exception long size_is
FALSE max_size string
fixed module struct

4.2 Supported platforms

This table shows the current status of the individual IDL4 backends. You can select one of these backends
with the-i and-p options:

Platform Interface Current status

IA32
X0 Supported
V2 Supported; no mapping
V4 Supported

Generic
X0 Supported
V2 Supported; no mapping
V4 Supported

23

4.3 Supported types

Basic data types

short signed 16 bit integer supported
long signed 32 bit integer supported
long long signed 64 bit integer supported
unsigned short unsigned 16 bit integer supported
unsigned long unsigned 32 bit integer supported
unsigned long long unsigned 64 bit integer supported
float floating point (32 bits) supported
double floating point (64 bits) supported
long double floating point (80 bits) supported
char 8 bit character supported
wchar 16 bit character supported
boolean boolean value supported
any wildcard type -
octet unsigned 8 bit integer supported
enum enumeration supported
ref pointer supported
fpage memory flexpage supported
fixed fixed-point decimal -

Constructed Types

string unbounded string supported
string<n> bounded string supported
wstring unbounded wide string supported
sequence<type> type sequence supported
sequence<type,n>bounded type sequencesupported
struct structure flat members supported
union union DCE style supported
Object object reference supported
array array supported
typedef alias type supported
exception exception memberless exceptions supported

Bibliography

[1] Object Management Group. CORBA 2.6 specification. http://www.omg.org/cgi-bin/doc?formal/01-12-35.

[2] Object Management Group. CORBA C language mapping. http://www.omg.org/cgi-bin/doc?formal/99-07-35.

[3] Andreas Haeberlen, Jochen Liedtke, Yoonho Park, Lars Reuther, and Volkmar Uhlig. Stub-code performance is becoming
important. InProceedings of the First Workshop on Industrial Experiences with Systems Software (WIESS), pages 31–38, San
Diego, CA, October 2000.

[4] Jochen Liedtke. Lava nucleus reference manual. http://i30www.ira.uka.de/publications/pub1998/ln-86-21.ps, March 1998.

[5] Jochen Liedtke. L4 nucleus version X.0 reference manual. http://l4ka.org/documentation/files/l4-86-x0.ps, September 1999.

[6] Jochen Liedtke and Horst Wenske. Lazy process switching. InProceedings of the 8th Workshop on Hot Topics in Operating
Systems, Elmau, Germany, May 2001.

[7] Jens-Peter Redlich.CORBA 2.0. Addison-Wesley, 1996.

[8] The L4Ka Team. L4 X.2 reference manual. http://l4ka.org/documentation/files/l4-x2.pdf, January 2002.

25

