
OS/2 APPLICATION BINARY INTERFACE
FOR POWERPC (32-BIT)

Release 1

December 8, 1995 7:31 pm

OS/2 Application Binary Interface for PowerPC (32-bit)

ii Release 1

The information in this document is not final and is still under development and subject to
change at any time. This document is being furnished by IBM for evaluation/development
feedback purposes only and IBM does not guarantee that IBM will make this document
generally available.

THE INFORMATION FURNISHED HEREIN IS ON AN “AS-IS” BASIS, AND IBM MAKES
NO WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL IBM BE LIABLE FOR ANY DAMAGES
ARISING FROM THE USE OF THE INFORMATION CONTAINED HEREIN, INCLUDING
INFRINGEMENT OF ANY PROPRIETARY RIGHTS, OR FOR ANY LOST PROFITS OR
OTHER INCIDENTAL AND/OR CONSEQUENTIAL DAMAGES, EVEN IF IBM HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Commercial Relations, IBM
Corporation, Purchase, NY, 10577.

The following copyright notice protects this document under the Copyright laws of the United
States and other countries which prohibits such actions as, but not limited to, copying,
distributing, modifying, and making derivative works.

© Copyright International Business Machines Corporation, 1994-1995.
All Rights Reserved.

Notice to US Government Users - Documentation related to restricted rights - Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract
with IBM Corp.

The following terms are trademarks of International Business Machines Corporation in the
United States and/or other countries:

IBM
Operating System/2
OS/2
PowerPC
PowerPC Architecture
SOMObjects
System Object Model

Release 1 iii

1 Introduction.. 1
1.1 Revision Control ... 2

2 Instruction Set ... 3
2.1 Restricted Instructions.. 4

3 Data Representation.. 5
3.1 Byte Ordering ... 6
3.2 Scalar Types - Size and Alignment .. 8
3.2.1 8-bit Integer .. 8
3.2.2 16-bit Integer .. 8
3.2.3 32-bit Integer .. 8
3.2.4 64-bit Integer .. 9
3.2.5 Pointer ... 9
3.2.6 Single Precision Floating Point .. 10
3.2.7 Double Precision Floating Point ... 10
3.2.8 Extended Precision Floating Point ... 10
3.3 Aggregates and Unions - Alignment and Padding ... 12
3.4 Unaligned Data Access.. 14
3.5 Bit Fields .. 16
3.6 UTF-8 ... 19

4 Procedure Linkage Conventions.. 21
4.1 Registers .. 22
4.2 Stack Frames... 25
4.3 Parameter Passing... 28
4.3.1 Variable Argument Lists ... 30
4.3.1.1 C Language Implementation ... 31
4.4 Return Values .. 34

5 System Object Model (SOM) Binary Interface... 35
5.1 Addressing, Calling Conventions, and Register Usage 37
5.2 SOM Class Library Structure ... 38
5.3 SOM Objects and Object References .. 41
5.4 SOM Method Table .. 42
5.5 SOM Ids ... 43
5.6 Basic Operations.. 44
5.7 Method Resolution Mechanisms .. 45
5.7.1 Using Offset Method Resolution .. 45
5.7.2 Using Name Lookup Method Resolution ... 46
5.7.3 Using Dispatch Method Resolution .. 47
5.8 SOM Kernel Functions ... 48
5.8.1 Required Functions .. 48
5.8.2 Optional Functions ... 48
5.8.3 Obsolete Functions .. 48
5.9 SOM Kernel External Variables ... 49
5.9.1 Required External Variables .. 49

OS/2 Application Binary Interface for PowerPC (32-bit)

iv Release 1

5.9.2 Optional External Variables ..49
5.10 SOM Kernel Class’ Release Order... 50
5.10.1 SOMObject ...50
5.10.2 SOMClassMgr ..50
5.10.3 SOMClass ..50

6 System Object Exception Handling..53

7 Execution Model...55
7.1 Code Model .. 56
7.2 Function Tags... 58
7.2.1 Long Form Function Tag Information ...60
7.3 Code Examples .. 63
7.3.1 Function Prologue and Epilogue ..63
7.3.2 Static Data Access ...71
7.3.3 Function Calls ..73
7.3.4 Dynamic Stack Space Allocation ...74

8 Resource File Format ..77
8.1 Resource File ... 78
8.1.1 Resource File Header ..78
8.1.2 Resource File Identification ..79
8.1.3 Resource File PowerPC Processor-specific Information80
8.2 Resource Collection ... 81
8.2.1 Resource Header ...81
8.3 Resource Item .. 83

9 Object and Load Module File Format ...85
9.1 ELF ... 86
9.1.1 ELF Operating System-specific Information ...86
9.1.1.1 Sections ...86
9.1.1.1.1 Special Sections ..88
9.1.1.2 Symbol Table ...89
9.1.1.2.1 Symbol Values ..89
9.1.1.3 Operating System Information ...91
9.1.1.3.1 OS/2-specific Information ..92
9.1.1.4 Import Table ...92
9.1.1.5 Export Table ..94
9.1.1.6 Resource Collection ...95
9.1.1.7 Segments ...95
9.1.1.7.1 Segment Permissions ...95
9.1.1.7.2 Segment Contents ..97
9.1.1.8 Dynamic Segment ...99
9.1.1.9 Initialization and Termination Functions ..102
9.1.1.10 Hash Table ..103
9.1.2 ELF PowerPC Processor-specific Information ...104
9.1.2.1 ELF Header ...104

Release 1 v

9.1.2.1.1 Machine Identification ... 104
9.1.2.2 Sections .. 105
9.1.2.2.1 Special Sections ... 105
9.1.2.3 Relocation ... 106
9.1.2.3.1 Relocation Types .. 106
9.1.2.4 Dynamic Segment ... 111
9.2 DWARF .. 114
9.2.1 DWARF PowerPC Processor-specific Information 114
9.2.1.1 Register Numbers ... 114

10 Object Library File Format ...117
10.1 Archive File Format .. 118
10.2 Library File Format ... 119
10.2.1 LIB File Layout ... 119
10.2.2 LIB Header ... 119
10.2.3 LIB Members ... 120
10.2.4 LIB Special Members ... 121
10.2.4.1 Symbol Table Member .. 121
10.2.4.2 Long File Name String Table Member .. 123
10.2.4.3 Full File Name String Table Member .. 123

11 Process Creation and Dynamic Loading... 125
11.1 Process Virtual Address Space.. 126
11.2 Process Initialization .. 131
11.2.1 OS/2 Process ... 131
11.2.1.1 Dynamic Linking of Shared Services Dynamic Link Libraries 131
11.2.2 Shared Services Process .. 132
11.2.3 OS/2 Dynamic Link Library Initialization .. 132
11.3 Process Termination .. 133
11.3.1 OS/2 Dynamic Link Library Termination .. 133
11.4 Thread Information Block ... 134
11.5 Global Offset Table (GOT) ... 135
11.6 Procedure Linkage Table (PLT) ... 137

Appendix A Compiler Support Extensions .. 141
A.1 ELF... 142
A.1.1 Sections ... 142
A.1.1.1 COMDAT Section .. 143
A.1.1.2 Symbol Name Demangling ... 144
A.1.1.3 Default Library ... 145
A.1.2 Note Information .. 145
A.1.2.1 Browser Information .. 146
A.1.2.1.1 Browser Information Records ... 146
A.1.2.2 Version Information ... 147
A.1.2.3 Description Information ... 147

OS/2 Application Binary Interface for PowerPC (32-bit)

vi Release 1

Release 1 1

Introduction

1 Introduction
This document describes the system interfaces for compiled application programs that will
run on operating systems built on the IBM Microkernel technology for the PowerPC
Architecture.

This document includes by reference other generally available documents as necessary. The
reader may find the following documents of interest:

• The PowerPC Architecture: A Specification for A New Family of RISC Processors,
Second Edition, IBM Corporation (ISBN 1-55860-316-6)

• PowerPC Microprocessor Family: The Programming Environments, IBM/Motorola (IBM
order number MPRPPCFPE-01 or Motorola order number MPCFPE/AD)

• PowerPC 603 RISC Microprocessor User’s Manual, IBM/Motorola (IBM order number
MPR603UMU-01 or Motorola order number MPC603UM/AD)

• Executable and Linking Format (ELF), Tool Interface Standards Committee (Review
Draft Version 1.1a)

• Tool Interface Standards Portable Formats Specification, Tool Interface Standards
Committee (Version 1.0)

• System V Application Binary Interface, Third Edition, UNIX System Laboratories (ISBN 0-
13-100439-5)

• System V Application Binary Interface, PowerPC Processor Supplement, Sun
Microsystems (Draft dated March, 1995)

Where possible, this ABI has maintained compatibility with System V Application Binary
Interface, PowerPC Processor Supplement. Incompatibilities are noted in the document
by “System V ABI Note” comments.

• SOMObjects Developer Toolkit Programmer’s Reference Manual, IBM Corporation

OS/2 Application Binary Interface for PowerPC (32-bit)

2 Release 1

1.1 Revision Control
This material was compiled from a variety of sources and was edited by BJ Hargrave, IBM
Personal Software Products. Comments can by sent to hargrave@austin.ibm.com.

All changes from the previous draft are marked with revision bars.

1. Release 1 (December 8, 1995 7:31 pm)

This is the first Release of this document.

Release 1 3

Instruction Set

2 Instruction Set
The PowerPC Architecture is defined in PowerPC Architecture, IBM Corporation. PowerPC
Architecture describes both the 32-bit and 64-bit portions of the architecture. This ABI
document only defines a 32-bit ABI for PowerPC-based operating systems. Also see
PowerPC Microprocessor Family: The Programming Environments, IBM/Motorola, for details
on a 32-bit implementation of the PowerPC Architecture.

ABI conforming programs containing machine instructions must use the 32-bit PowerPC
instruction set including the instruction encodings and semantics as defined by the
architecture.

A processor must implement the instruction set of the architecture, perform the operations
indicated by the instructions and produce the expected results. No performance constraints
are levied by the ABI. A software emulation of the processor architecture could be ABI
conforming.

Note: The use of PowerPC 601 instructions which are not part of the PowerPC Architecture
is not ABI conforming. Programs using these instructions will function on the
PowerPC 601 but will not on other PowerPC implementations.

OS/2 Application Binary Interface for PowerPC (32-bit)

4 Release 1

2.1 Restricted Instructions
An ABI conforming processor may implement the optional instructions from the PowerPC
Architecture as well as instructions not in the architecture. However, programs that use these
instructions will not be ABI conforming.

All instructions that are neither privileged nor optional can be assumed to exist and function
properly and may be used by ABI conforming programs. However, the following instructions
that handle non-scalar data are not ABI conforming and may not be used by ABI conforming
programs.

These instructions all generate alignment exceptions when executed in the Little Endian
mode of the processor.

Table 2-1: Load/Store String Instructions

Mnemonic Description

lswi load string word immediate

lswx load string word indexed

stswi store string word immediate

stswx store string word indexed

Table 2-2: Load/Store Multiple Instructions

Mnemonic Description

lmw load multiple word

stmw store multiple word

Release 1 5

Data Representation

3 Data Representation
The PowerPC Architecture supports the following operand sizes:

Note: An “b” indicates that the bit position can contain either 0 or 1.

Note: Although not permitted as storage operands by the PowerPC Architecture, quadwords
are shown to demonstrate alignment and size.

Table 3-1: Operand types and sizes

Operand Length Addr28:31 if aligned

Byte 8 bits bbbb

Halfword 16 bits bbb0

Word 32 bits bb00

Doubleword 64 bits b000

Quadword 128 bits 0000

OS/2 Application Binary Interface for PowerPC (32-bit)

6 Release 1

3.1 Byte Ordering
Byte ordering defines how the bytes that make up the larger, multi-byte operands are
ordered in memory. Big Endian ordering means that the most significant byte (msb) is
located in the lowest addressed byte position in the operand (byte 0). Little Endian ordering
means that the least significant byte (lsb) is located in the lowest addressed byte position in
the operand (byte 0).

The PowerPC Architecture supports both Big Endian or Little Endian byte ordering. This
document defines an ABI based upon the Little Endian byte ordering.

The following figures illustrate the bit and byte numbering within the various size operands.
Little Endian byte numbers are in the upper right and Big Endian byte numbers are in the
upper left. Bit numbers appear in the lower corners.

Figure 3-1: Halfword

0 1 1 0
msb lsb

0 7 8 15

Figure 3-2: Word

0 3 1 2 2 1 3 0
msb lsb

0 7 8 15 16 23 24 31

Figure 3-3: Doubleword

0 7 1 6 2 5 3 4
msb

0 7 8 15 16 23 24 31
4 3 5 2 6 1 7 0

lsb
32 39 40 47 48 55 56 63

Release 1 7

Data Representation

Figure 3-4: Quadword

0 15 1 14 2 13 3 12
msb

0 7 8 15 16 23 24 31
4 11 5 10 6 9 7 8

32 39 40 47 48 55 56 63
8 7 9 6 10 5 11 4

64 71 72 79 80 87 88 95
12 3 13 2 14 1 15 0

lsb
96 103 104 111 112 119 120 127

OS/2 Application Binary Interface for PowerPC (32-bit)

8 Release 1

3.2 Scalar Types - Size and Alignment
This section describes the mapping of C/C++ scalar data types onto the PowerPC
Architecture.The Size column indicates the size of the data type in bytes. The Alignment
column indicates the preferred alignment for the data type. If the data type is not aligned to
the preferred alignment then alignment exceptions may occur when accessing the data from
memory. Scalar data types on the PowerPC are aligned on their “natural” boundaries. That
is, their preferred alignment is equal to their size.

3.2.1 8-bit Integer

3.2.2 16-bit Integer

Note: UniChar is the data type representing Unicode characters.

3.2.3 32-bit Integer

Note: The type of an enumeration data type, e.g. the C/C++ type enum, is the smallest
integral type that can contain all of the enumeration values.

Table 3-2: 8-bit Integer

Operand C/C++ type Size Alignment

signed byte signed char 1 1

unsigned byte char
unsigned char

1 1

Table 3-3: 16-bit Integer

Operand C/C++ type Size Alignment

signed halfword short
signed short

2 2

unsigned halfword unsigned short
wchar_t
UniChar

2 2

Table 3-4: 32-bit Integer

Operand C/C++ type Size Alignment

signed word int
signed int
long
signed long

4 4

unsigned word unsigned int
unsigned long

4 4

Release 1 9

Data Representation

3.2.4 64-bit Integer

Note: Support for 64-bit integers is currently implemented by some 32-bit compilers as
long long although this data type is not part of the current ANSI C specification.

System V ABI Note: The System V Application Binary Interface, PowerPC Processor
Supplement defines 64-bit integers (long long) and their semantics, but specifically
indicates that their use is non-conforming. 64-bit integers are part of this ABI and their
use is conforming. The definition and semantics are the same in both ABIs.

3.2.5 Pointer

Note: This is a 32-bit ABI, therefore pointers are 32-bits in size.

Table 3-5: 64-bit Integer

Operand C/C++ type Size Alignment

signed doubleword __int64
long long
signed long long

8 8

unsigned doubleword __uint64
unsigned long long

8 8

Table 3-6: Pointer

Operand C/C++ type Size Alignment

unsigned word any-type *
any-type (*) ()

4 4

OS/2 Application Binary Interface for PowerPC (32-bit)

10 Release 1

3.2.6 Single Precision Floating Point

3.2.7 Double Precision Floating Point

3.2.8 Extended Precision Floating Point

The extended precision floating point format is an ordered pair of double precision
values. Together they represent the number which is their algebraic sum. The "higher-
order" double precision value is larger in magnitude and is stored in the lower-addressed
doubleword of the quadword. The "lower-order" double precision value is smaller in
magnitude and is stored in the higher-addressed doubleword of the quadword. The two
double precision values are defined and manipulated such that the lower-order double
precision value “extends” the precision of the higher-order double precision value.

• The lower-order value typically has an exponent which is 53 less than that of the
higher-order value, but this is not mandated.

• The signs of the two double precision values may differ.

• The exponent range is no greater than double precision.

• As the absolute value of the extended precision quantity becomes very small, the
additional precision provided by the lower-order double precision value decreases,
until for denormalized numbers, the precision is the same as double precision.

Table 3-7: Single Precision Floating Point

Operand C/C++ type Size Alignment

word, single precision
(IEEE 754)

float 4 4

Table 3-8: Double Precision Floating Point

Operand C/C++ type Size Alignment

doubleword, double
precision (IEEE 754)

double 8 8

Table 3-9: Extended Precision Floating Point

Operand C/C++ type Size Alignment

quadword, extended
precision (ordered
pair of double
precision floating
point values)

long double 16 16 (for
structures,
only 8 byte
alignment is
required
otherwise)

Release 1 11

Data Representation

The extended precision floating point format need not be conformant with IEEE 754. The
following deviations are permitted.

• The only rounding mode that must be supported in round-to-nearest.

• The IEEE special numbers NaN and INF may not be fully supported. Even basic
operations such as addition and subtraction may not propagate NaN and INF
correctly.

• The IEEE status flags in FPSCR for overflow, underflow, etc. may not be correctly set,
even by basic operations such as addition and subtraction.

System V ABI Note: The System V Application Binary Interface, PowerPC Processor
Supplement defines extended precision floating point (long double) differently. It is
defined there as a 128-bit IEEE 754 conforming data type with a sign bit, a 15 bit
exponent with a bias of -16383, and a 112 bit fraction with a leading implicit bit. It is
treated as a structure for the purposes of parameter passing and return values.

OS/2 Application Binary Interface for PowerPC (32-bit)

12 Release 1

3.3 Aggregates and Unions - Alignment and Padding
Aggregates (structures and arrays) and unions are aligned using the alignment of the most
strictly aligned component, i.e. the component with the largest alignment dictates the
alignment of the aggregate or union in which it is contained. Each component is assigned the
lowest available offset with the appropriate alignment. This may require internal padding,
depending on the size of the previous component. The size of on aggregate or union is
always a multiple of its alignment. Thus a structure or union may require “tail” padding to
meet size and alignment constraints.

The following figures illustrate structure and union member alignment and packing for Little
Endian byte ordering. Little Endian byte numbers are in the upper right.

Figure 3-5: Small Structure

struct
{

char c;
};

Byte aligned, sizeof is 1.

Figure 3-6: Structure with No Padding

struct
{

char c;
char d;
short s;
long n;

};

Word aligned, sizeof is 8.

c
0

c
0

d
1

s
2

n
4

Release 1 13

Data Representation

Figure 3-7: Structure with Padding

struct
{

char c;
double d;
short s;

};

Doubleword aligned, sizeof is 24.
The structure is padded both
internally, to maintain proper
alignment of the members, and at the
“tail” to maintain proper size of the
structure.

Figure 3-8: Structure with Packing on 1 Byte Boundary

struct
{

char c;
double d;
short s;
long n;

};

Byte aligned, sizeof is 15. The
structure is not padded either
internally or at the “tail”. Both the
structure itself and its members are
improperly aligned for direct access.

Figure 3-9: Union Allocation

union
{

char c;
short s;
int j;

};

Word aligned, sizeof is 4.

c
0

pad
4

pad
1

d
8

d
12

pad
18

s
16

pad
20

c
0

d
1

s
9

d
8

d
4

n
11

n
12

c
0

pad
2

s
0

j
0

pad
1

OS/2 Application Binary Interface for PowerPC (32-bit)

14 Release 1

3.4 Unaligned Data Access
Since PowerPC processors do not support unaligned data access in Little Endian mode
without causing an alignment exception, compiler assistance is necessary to support existing
code with poorly aligned data structures. Many legacy applications are from the Intel x86
which is very forgiving of unaligned data. Unaligned data accesses on the Intel x86 chips are
penalized only cycles rather than the expensive alignment exceptions of the Little Endian
mode of the PowerPC.

One of the key areas of legacy applications is OS/2, an operating system that originated on
the Intel x86 architecture. In fact there are numerous system data structures that are not
“naturally” aligned. For this reason, compiler support is critical to facilitate the porting of
applications to OS/2 for the PowerPC and the sharing of persistent data between both
platforms. While this compiler support is not required to produce ABI-compliant code, it is
highly recommended. In short, the compiler support involves using multiple instructions to
access an unaligned scalar quantity without causing an alignment exception. For example, in
Figure 3-8, “Structure with Packing on 1 Byte Boundary”, on page 13, member n in the
structure is improperly aligned. Assuming that r3 points to the structure and the structure is
aligned on a word boundary, the following code example would load the value of n into r4
without causing an alignment exception.

lwz %r4,12(%r3) ;load bytes 1,2,3 into r4
lbz %r5,11(%r3) ;load byte 4 into r5
slwi %r4,%r4,8 ;shift bytes 1,2,3 left one byte
or %r4,%r4,%r5 ;or all bytes together in r4

Similar techniques can be used to access and update scalars with other misalignments. All
multi-byte scalar data types listed in § 3.2, “Scalar Types - Size and Alignment”, should be
handled. The specific techniques are left to the compiler vendor.

The compiler can ensure that all automatic and global data are “naturally” aligned. The
compiler can then determine, at compile time, the specific alignment problems of individual
members of an aggregate and generate the appropriate code to avoid alignment exceptions
when these members are accessed.

When dealing with pointers, however, the alignment of the data referenced by the pointer is
unknown at compile time. Therefore one of the following choices must be made.

1. Code is generated to assemble the data item by accessing only individual bytes. This
choice makes no assumptions about the alignment of the data.

2. Code is generated to determine at runtime if the data item being accessed is “naturally”
aligned. If the data item is aligned it can be directly accessed. Otherwise it accessed by
individual bytes

3. Code is generated accessing the data item assuming it is naturally aligned. If the data
item is unaligned, an alignment exception will be generated and the alignment exception
handler will be invoked. The exception handler will then complete the instruction,
accessing the data item by individual bytes, and return control to the next instruction.
This choice assumes that most pointers will point to naturally aligned data items.

It is recommended that compiler support for unaligned data access be activated by either

Release 1 15

Data Representation

1. The use of a structure packing pragma which causes a structure to have members which
are not “naturally” aligned or to have the structure’s size not be a multiple of the “natural”
alignment of the structure.

2. The use of a new pragma that signifies that a structure may contain unaligned members
or a pointer variable may point to unaligned data.

OS/2 Application Binary Interface for PowerPC (32-bit)

16 Release 1

3.5 Bit Fields
Structure and unions may have bit fields which define integral objects with a specified
number of bits.

Bit fields that are not specified as either signed or unsigned always have non-negative
values. Bit fields are subject to the same rules of size and alignment as their declared type in
addition to the following.

• Bit fields are allocated within a storage unit from least significant bit to most significant bit.

• Bit fields do not cross the boundaries of its declared type. That is, a bit field cannot span
between multiple storage units of its declared type.

• Bit fields must share a storage unit with other members (either bit field or non-bit field), if
and only if there is sufficient space within the storage unit of its declared type.

• The declared type of an unnamed bit field does not affect the alignment of a structure or
union. However, they do cause alignment from the beginning of the structure based upon
their declared type. An unnamed bit field of zero-width prevents any further member
(either bit field or non-bit field) from residing in the storage unit of the declared type of
the zero-width bit field.

Table 3-10: Bit Field Ranges

Bit field type Width (w) Range

signed char
char
unsigned char

1 to 8 bits
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

signed short
short
unsigned short

1 to 16 bits
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

signed int
int
unsigned int
enum

1 to 32 bits

-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1
0 to 2w-1

signed long
long
unsigned long

1 to 32 bits
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

Release 1 17

Data Representation

The following figures illustrate structure and union member offsets for Little Endian byte
ordering. Little Endian byte numbers are in the upper right. Bit numbers appear in the lower
corners.

Figure 3-10: Bit Field Right-to-Left Allocation

struct
{

int j:5;
int k:6;
int m:7;

};

Word aligned, sizeof is 4. The
structure is “tail” padded so that the
size of the structure is a multiple of its
alignment.

Figure 3-11: Bit Field Boundary Alignment

struct
{

short s:9;
int j:9;
char c;
short t:9;
short u:9;
char d;

};

Word aligned, sizeof is 12.

Figure 3-12: Bit Field Storage Unit Sharing

struct
{

char c;
short s:8;

};

Halfword aligned, sizeof is 2.

j
0

27 31
k

21 26
m

14 20
pad

0 13

s
0

23 31
j

14 22
pad

8 13
c

3

0 7

t
4

23 31
pad

16 22
u

6

7 15
pad

0 6

d
8

24 31
pad

9

0 23

c
0

8 15
s

1

0 7

OS/2 Application Binary Interface for PowerPC (32-bit)

18 Release 1

As can be seen in the above figures, bit fields of the largest integral types (int or long)
pack more densely than bit fields of smaller types. The smaller types can be used to force a
particular alignment.

Figure 3-13: Unnamed Bit Fields

struct
{

char c;
int :0
char d;
short :9;
char e;

};

Byte aligned, sizeof is 9. The
declared types of the unnamed bit
fields do not affect the alignment of
the structure.

c
0

24 31
:0

1

0 23

d
4

24 31
pad

5

16 23
:9

6

7 15
pad

0 6

e
8

0 7

Release 1 19

Data Representation

3.6 UTF-8
UTF-8 is a transformation of Unicode characters such that there are no embedded null bytes
in a character string. This allows Unicode character strings to be encoded in a way that they
may be used in places that historically only support single-byte character strings which may
use the null-byte as a string terminator. UTF-8 encoded character strings are specified in
several places in this ABI.

The UTF-8 transformation encodes Unicode characters in the range 0 – 0xFFFF using multi-
byte characters of 1, 2 and 3 bytes in length. Single-byte characters are reserved for the
ASCII characters in the range 0 – 0x7F. These characters all have the most significant bit
set to zero. For all characters which are encoded using more than one byte, the number of
bytes used is indicated by the number of most significant bits which are set to one.
Subsequent bytes of the multi-byte character are all of the form 10xxxxxx.

The Unicode character value is just the concatenation of the v bits in the multi-byte
encoding. When there are multiple ways to encode a value, only the shortest encoding is
legal.

Table 3-11: UTF-8 Transformation

Bytes Bits Range Byte sequence in binary

1 7 0x0000 – 0x007F 0vvvvvvv

2 11 0x0080 – 0x07FF 110vvvvv 10vvvvvv

3 16 0x0800 – 0xFFFF 1110vvvv 10vvvvvv 10vvvvvv

OS/2 Application Binary Interface for PowerPC (32-bit)

20 Release 1

Release 1 21

Procedure Linkage Conventions

4 Procedure Linkage Conventions
This chapter defines the standard system function calling convention. It is applicable to both
procedural and object-oriented function calls. All system interfaces require this calling
convention.

Note: The standard system function calling conventions apply only to global functions. Local
functions that are not reachable from other compilation units may use other calling
conventions.

OS/2 Application Binary Interface for PowerPC (32-bit)

22 Release 1

4.1 Registers
The PowerPC Architecture provides 32 General Purpose Registers (GPRs). Each GPR is a
word (32-bit) in size and is used for integer and address computations. There are also 32
Floating Point Registers (FPRs). Each FPR is a doubleword (64-bit) in size and is used for
floating point computations. There are also other registers with specific purposes. All
registers (GPR, FPR and other) are global to all functions in a thread of execution.

This table gives a description of the usage of the PowerPC registers in this ABI.

Table 4-1: Register Usage

Register Status Usage

r0 Volatile† Language specific purpose.

r1 Dedicated Stack pointer. Always valid.

r2 Dedicated Reserved for system use. This register points to
the Thread Information Block and should not be
modified by application code. See § 11.4,
“Thread Information Block”, on page 134, for
details.

r3
r4

Volatile Parameter passing and return values.

r5
r6
r7
r8
r9
r10

Volatile Parameter passing.

r11
r12
r13

Volatile† Language specific purpose.

System V ABI Note: The System V Application
Binary Interface, PowerPC Processor
Supplement defines r13 to be a Small Data
Area Pointer.

Release 1 23

Procedure Linkage Conventions

r14
r15
r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30
r31

Non-volatile Local variables.

Note: The stack frame layout assumes that a
contiguous set of GPRs will be allocated
from r31 down towards r13.

Note: Programming languages that require a
static scope pointer (e.g. Pascal) shall
use r31 for that purpose.

f0 Volatile Language specific purpose.

f1
f2
f3
f4

Volatile Parameter passing and return values.

f5
f6
f7
f8

Volatile Parameter passing.

f9
f10
f11
f12
f13

Volatile Language specific purpose.

Table 4-1: Register Usage (Continued)

Register Status Usage

OS/2 Application Binary Interface for PowerPC (32-bit)

24 Release 1

† The values in these volatile registers may be modified during the transfer of control
from one function to another by system “glue” code.

There are no special restrictions on the use of registers in system exception handling or
signal routines.

f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31

Non-volatile Local variables.

Note: The stack frame layout assumes that a
contiguous set of FPRs will be allocated
from f31 down towards f13.

CR0
CR1
CR5
CR6
CR7

Volatile Condition Register fields. Each is 4 bits wide.
CR bit 6 (CR1, floating point invalid operation
exception) is set by the caller of a variable
argument list function. See § 4.3.1, “Variable
Argument Lists”, on page 30 for more
information.

CR2
CR3
CR4

Non-volatile Condition Register fields. Each is 4 bits wide.
Together CR0 - CR7 make up the 32 bit CR
register.

LR Volatile Link Register. Used to hold the address to which
a called function returns.

CTR Volatile† Count Register

XER Volatile Fixed Point Exception Register

FPSCR See Usage FPSCR0:23 is volatile and FPSCR24:31 is global.
FPSCR24:31 (the exception enable and rounding
control bits) can be modified by routines that
have such documented behavior.

Table 4-1: Register Usage (Continued)

Register Status Usage

Release 1 25

Procedure Linkage Conventions

4.2 Stack Frames
In addition to the registers, each function can have a stack frame on the current thread’s
stack. Register r1 is the stack pointer and points to the current stack frame. A function must
acquire a stack frame if the function calls another function or requires any of the optional
stack frame components.

Figure 4-1: Stack Frame Layout

Table 4-2: Stack Frame Components

Component Description

Stack pointer, r1 • The stack pointer shall always maintain 16 byte alignment, shall
always point to the first word of the lowest allocated, valid stack
frame and shall grow down towards low addresses. Negative
references from the stack pointer are not permitted.

• If a function requires a stack frame, the function’s prologue shall
atomically decrement the stack pointer and set the back chain
pointer with one of the “Store Word with Update” instructions.
Thus, the stack pointer always points to a linked list of stack
frames.

• When releasing a stack frame, a function’s epilogue shall
atomically update the stack pointer prior to returning to the
calling function by either setting it to the value of the back chain
pointer or incrementing it by the same amount it was
decremented in the function prologue.

Floating Point Register
save area

General Purpose Register
save area

CR save word

local variable area

parameter list area

LR save word

Back chain
Stack
pointer r1

High Address

Low Address

Stack Frame
Header

OS/2 Application Binary Interface for PowerPC (32-bit)

26 Release 1

Back chain
pointer

• The back chain pointer shall always point to the base of the
previously allocated stack frame. Except for the first stack frame
in the stack which has a back chain pointer of 0.

LR save word • When a called function creates its stack frame, it shall save the
value of LR when the function was entered into the LR save word
of the callers stack frame.

• When returning from a function, all non-volatile registers shall be
restored prior to restoring LR.

parameter list
area
(optional)

• The parameter list area is a variable size area allocated by the
caller.

• It shall be large enough to contain the arguments the caller
stores in it.

• It is volatile and can be modified by the called function.

local variable area
(optional if stack
frame padding is
not required)

• There is no restriction on the use and size of this stack frame
component.

• Any padding of the stack frame that is necessary to maintain 16
byte alignment shall be in this stack frame component.

CR save word
(optional)

• If a function modifies any of the non-volatile fields in CR, the non-
volatile fields of CR, as they were at function entry, shall be
saved.

GPR save area
(optional)

• The size of the GPR save area shall be large enough to hold all
the non-volatile GPRs from the lowest numbered non-volatile
GPR used by the function to r31 inclusive.

• Before a function modifies the value in a non-volatile GPR, rn,
the value of rn, as it was at function entry, shall be saved in the
word at offset 4*(n-31) from the address of the highest-
addressed word of the GPR save area. Thus r31 is stored in the
highest-addressed word, r30 in the next lower-addressed word,
etc.

Note: r31 may not participate in non-volatile GPR saving. See the
description of the gpr31_nosave bit in Table 7-1, “Function
Tag Word,” on page 58.

Table 4-2: Stack Frame Components (Continued)

Component Description

Release 1 27

Procedure Linkage Conventions

Except for the stack frame header (the back chain pointer and the LR save word) and any
necessary padding to maintain the 16 byte alignment of the stack frame, no space need be
allocated for stack frame components which are not used. If a function does not call any
functions (a “leaf” function) and does not require any of the optional stack frame
components, it need not establish its own stack frame. Any padding of the stack frame that is
necessary to maintain 16 byte alignment shall be wholly within the local variable area. The
parameter list area shall immediately follow the stack frame header. The register save areas
(CR, GPR, FPR) shall contain no padding.

See § 7.2, “Function Tags”, on page 58 for information on function tags which describe the
usage of the register save areas (LR, CR, GPR, FPR) of the stack frame. This information can
be used by exception handlers to determine the contents of the non-volatile registers as they
were when a function was entered.

See § 7.3.1, “Function Prologue and Epilogue”, on page 63 for example code which
demonstrates acquiring and releasing stack frames.

See § 7.3.4, “Dynamic Stack Space Allocation”, on page 74 for information on dynamically
increasing the stack frame size once inside a function.

FPR save area
(optional)

• The size of the FPR save area shall be large enough to hold all
the non-volatile FPRs from the lowest numbered non-volatile
FPR used by the function to f31 inclusive.

• Before a function modifies the value in a non-volatile FPR, fn,
the value of fn, as it was at function entry, shall be saved in the
doubleword at offset 8*(n-31) from the address of the highest-
addressed doubleword of the FPR save area. Thus f31 is stored
in the highest-addressed doubleword, f30 in the next lower-
addressed doubleword, etc.

Table 4-2: Stack Frame Components (Continued)

Component Description

OS/2 Application Binary Interface for PowerPC (32-bit)

28 Release 1

4.3 Parameter Passing
For the PowerPC Architecture, it is more efficient to pass parameters in registers (GPRs and
FPRs) rather than build parameter lists in memory (or on the stack). Since all computations
are performed on registers and there are a large number of registers available, it makes
sense to pass parameters in registers where they can be used immediately by the called
function. The number of parameters that can be directly passed in registers is limited by the
register usage definition in the ABI.

Up to eight integer parameters, loaded sequentially in r3 through r10, and eight floating
point parameters, loaded sequentially in f1 through f8, can be passed directly in registers.
Only those parameter passing registers actually needed in a function call will be loaded with
parameter values. The remaining unused parameter passing registers will contain undefined
values.

Only when a parameter cannot be passed in a register (more than eight integer or more than
eight floating point parameters or the parameter is too large to be passed in a register) must
the parameter list area component of the stack frame be allocated. The parameter list area
need only be allocated large enough to contain only those parameters not being passed by
register. The parameter list area is partitioned into parameter words with the first parameter
word (0) being at the low address of the parameter list area immediately adjacent to the
stack frame header.

The following algorithm details how parameters are to be passed. For this algorithm,
parameters are ordered from left (first parameter) to right and the evaluation order is
unspecified. Let gr and fr be the number of the next available GPR and FPR, respectively
and param be the address of the next available parameter word. Initialize gr to 3, fr to 1
and param to the address of lowest-addressed word in the parameter list area. For each
parameter, proceeding left to right, select its type from the following table and take the
indicated action.

Table 4-3: Parameter Passing Types and Actions

Type Action

• Single precision floating point

• Double precision floating point

If fr ! 8, load the parameter value into FPR fr,
set fr to fr+1.
Otherwise (no remaining parameter passing
FPRs) treat as type Other.

• Extended precision floating
point

If fr ! 7, load the lower-addressed doubleword of
the parameter value into FPR fr and the higher-
addressed doubleword of the parameter value
into FPR fr+1. Set fr to fr+2.
Otherwise (insufficient parameter passing FPRs)
treat as type Other.

Release 1 29

Procedure Linkage Conventions

The values in registers and the bytes in the parameter list area which were skipped over by
the actions above are undefined.

Note: When passing single precision floating point values, either in an FPR or as a
doubleword in the parameter list area, the value shall be rounded to single precision,
if not already rounded to single precision, before being passed.

• 8-bit, 16-bit or 32-bit integer

• Pointer

• Structure or union
These shall be treated as a pointer
to the object or to a copy of the
object where necessary to enforce
call-by-value semantics. The caller
can pass a pointer to the object
only if the callee treats the object
as “constant”.

If gr ! 10, load the parameter value into GPR gr,
set gr to gr+1. Parameter values smaller than 32
bits in size are sign or zero extended as
appropriate to 32 bits.
Otherwise (no remaining parameter passing
GPRs) treat as type Other.

• 64-bit integer If gr < 9 and even, set gr to gr+1.
If gr ! 9, load the lower-addressed word of the
parameter value into GPR gr and the higher-
addressed word of the parameter value into GPR
gr+1. Set gr to gr+2.
Otherwise (insufficient parameter passing GPRs)
treat as type Other.

• Other
Parameters not handled above are
passed in the parameter list area
of the callers stack frame.

8-bit, 16-bit and 32-bit integer (sign or zero
extended as appropriate to 32 bits) and pointer
(including implicit pointers to structure or union)
parameters are considered to have word size and
alignment. Single precision floating point
(converted to double precision floating point
representation), double precision floating point
and 64-bit integer parameters are considered to
have doubleword size and alignment. Extended
precision floating point parameters are
considered to have quadword size and
doubleword alignment.
Round param up to a multiple of the alignment
required of the parameter and copy the
parameter value byte-wise starting with the
lowest addressed byte into bytes param[0]
through param[size-1]. Set param to
param+size.

Table 4-3: Parameter Passing Types and Actions (Continued)

Type Action

OS/2 Application Binary Interface for PowerPC (32-bit)

30 Release 1

4.3.1 Variable Argument Lists

Functions should make no assumptions about the location of parameters that were passed
to the function. Some otherwise portable functions assume that all arguments are passed on
the stack and appear in increasing order on the stack. Functions with these assumptions
have never been portable but have worked on many implementations. However, these
functions will not work under this ABI as the majority of parameters are passed via register.
Portable C and C++ programs should use <stdarg.h> to access parameters in variable
argument lists.

A caller of a function that takes a variable argument list (or an unprototyped function) shall
set bit 6 of CR if it passes one or more parameters in floating point registers. It is strongly
recommended that the caller clear the bit otherwise. Bit 6 of CR can be set with
“creqv 6,6,6” and cleared with “crxor 6,6,6”.

The notification of parameters in FPRs by setting bit 6 in CR can be used by variable
argument list functions in two ways. First, the variable argument list function can determine if
it must store the parameter passing FPRs in memory. Second, by knowing that there are no
floating point parameters, the function can avoid acquiring a “floating point state” for the

Figure 4-2: Parameter Passing Example

typedef struct
{

int a, b;
double dd;

} sparm;
sparm s, t;
int c, d, e, f, g, h;
long double ld;
double ff, gg, hh, ii, jj, kk, ll, mm, nn;

func(c, ff, d, gg, e, hh, f, ii, g, jj, h, ld, kk, ll, s, mm, t,
nn);

General Purpose Registers Floating Point Registers Parameter List Area offsets

r3: c
r4: d
r5: e
r6: f
r7: g
r8: h
r9: ptr to s
r10: ptr to t

f1: ff
f2: gg
f3: hh
f4: ii
f5: jj
f6: ld (lo)
f7: ld (hi)
f8: kk

00: ll (lo)
04: ll (hi)
08: mm (lo)
0C: mm (hi)
10: nn (lo)
14: nn (hi)

Note: (lo) and (hi) denote the lower-addressed and higher-addressed half of the
parameter as stored in memory. The “ptr to” arguments are pointers to copies, if
necessary, to preserve call-by-value semantics.

Release 1 31

Procedure Linkage Conventions

process. Having no “floating point state” means that the floating point registers need not be
saved and restored on context switches.

The cost of this notification is one additional non-memory reference instruction in all callers
of variable argument list functions. ANSI C requires that all variable argument list functions
be prototyped with a trailing ellipsis (“…”), but compiler vendors are expected to provide
support for variable argument list functions in non-ANSI programs or to treat all non-
prototyped functions as potentially having variable arguments.

4.3.1.1 C Language Implementation

The va_list type defined in <stdarg.h> shall have a storage representation as described
below in Figure 4-3, “va_list Description”. The source representation of the va_list type is
not specified.

Figure 4-3: va_list Description

struct __va_list
{

char gpr;
char fpr;
char reserved[2];
char *input_arg_area;
char *reg_save_area;

};

Member Description

gpr Index into the array of 8 parameter passing GPRs, r3 through
r10, stored in the register save area. Index 0 corresponds to
r3, 1 to r4, etc. This is initialized by va_start to contain the
index of the first parameter passing GPR unused by
parameters to the left of the ellipsis (“…”). If all parameter
passing GPRs are used by parameters to the left of the
ellipsis, then gpr shall be set to 8.

fpr Index into the array of 8 parameter passing FPRs, f1 through
f8, stored in the register save area. Index 0 corresponds to
f1, 1 to f2, etc. This is initialized by va_start to contain the
index of the first parameter passing FPR unused by
parameters to the left of the ellipsis (“…”). If all parameter
passing FPRs are used by parameters to the left of the ellipsis,
then fpr shall be set to 8.

reserved Padding.

input_arg_area Location in the parameter list area of the stack frame which
may have the next variable argument passed in memory. This
is initialized by va_start to contain the address of the first
word in the parameter list area unused by parameters to the
left of the ellipsis (“…”).

OS/2 Application Binary Interface for PowerPC (32-bit)

32 Release 1

The following suggests a possible implementation for variable argument list support but it is
not included in the ABI specification.

The va_start macro will require inline support from the compiler in order to properly
initialize a va_list variable. The va_arg macro will require C runtime library support in
order to manipulate the va_list variable. The runtime library can provide a __va_arg
function to be used by the va_arg macro. The __va_arg function would return a pointer to
the next argument of the specified type and would be defined as follows.

void * __va_arg (va_list *argp, _va_arg_type type);

Compiler support would be necessary to convert the type specified to the va_arg macro to
one of the values of the _var_arg_type type.

reg_save_area Pointer to the register save area. This pointer is initialized by
va_start to contain the address of the register save area.
The register save area shall be doubleword aligned and large
enough to store the parameter passing registers, r3 through
r10 and f1 through f8. The parameter passing registers are
copied to the register save area during the function prologue.
The registers are stored in the register save area beginning
with r3 through r10 optionally followed by f1 through f8 if CR
bit 6 is set.

Figure 4-4: _va_arg_type Description

typedef enum
{

arg_ARGPOINTER,
arg_WORD,
arg_DOUBLEWORD,
arg_REAL,
arg_DOUBLEREAL

} _va_arg_type;

Value Description

arg_ARGPOINTER The argument is a word in size and is passed in a parameter
passing GPR, r3 through r10, or in memory. The argument is
treated as a pointer to the actual argument (struct or union).

arg_WORD The argument is a word in size and is passed in a parameter
passing GPR, r3 through r10, or in memory. The argument is
an 8-bit, 16-bit or 32-bit integer or pointer (sign or zero
extended as appropriate if necessary.)

arg_DOUBLEWORD The argument is a doubleword in size and is passed in an odd/
even pair of parameter passing GPRs, r3 through r10, or in
memory. The argument is a 64-bit integer.

Figure 4-3: va_list Description (Continued)

Release 1 33

Procedure Linkage Conventions

arg_REAL The argument is a doubleword in size and is passed in a
parameter passing FPR, f1 through f8, or in memory. The
argument is a single precision floating point (converted to
double precision floating point format) or double precision
floating point value.

arg_DOUBLEREAL The argument is a quadword in size and is passed in a pair of
parameter passing FPRs, f1 through f8, or in memory. The
argument is an extended precision floating point value.

Figure 4-4: _va_arg_type Description (Continued)

OS/2 Application Binary Interface for PowerPC (32-bit)

34 Release 1

4.4 Return Values
The following table details how return values are to be handled.

Table 4-4: Return Value Types and Actions

Type Action

• Single precision floating point

• Double precision floating point

Return in f1. The return value is rounded to
single precision for the return value type of single
precision floating point.

• Extended precision floating
point

Return the lower-addressed doubleword in f1
and the higher-addressed doubleword in f2.

• 8-bit, 16-bit or 32-bit integer

• Pointer

Return in r3. Return values smaller than 32 bits
in size are sign or zero extended as appropriate
to 32 bits.

• 64-bit integer Return the lower-addressed word in r3 and the
higher-addressed word in r4.

• Structure or union ! 8 bytes in
size

Return the lower-addressed word in r3 and the
higher-addressed word in r4 as if it were first
stored in an 8 byte aligned memory area. Bits
beyond the last member of the structure or union
are not defined.

• Structure or union > 8 bytes in
size

These shall be returned in a memory area
allocated by the caller whose address is passed
to the called function as a hidden first parameter
in r3. This causes gr to be initialized to 4 rather
than 3 in § 4.3, “Parameter Passing”.

Release 1 35

System Object Model (SOM) Binary Interface

5 System Object Model (SOM) Binary Interface
IBM’s System Object Model (or SOM) provides a language-neutral binary interface for object-
oriented (OO) class libraries. A SOM class library is a collection of one or more SOM classes
whose functionality is accessible via interface descriptions expressed in OMG’s (Object
Management Group, Inc.) Interface Definition Language (IDL). Every SOM class is
implemented with a procedure that constructs and registers the class and a set of method
procedures that implement the methods defined for the class. A SOM class library may be
realized as a dynamically linked library (DLL) on platforms that provide dynamic linking, or a
set of object files contained in a static library on platforms that do not. Programmers typically
make use of SOM class libraries through language bindings that map the IDL interface
descriptions into a particular programming language or through SOM-aware language
compilers that produce code directly to the SOM binary interface.

The SOM Kernel is a distinguished class library that contains the SOM kernel classes and
implements all of the basic mechanisms and general OO capabilities used in creating and
manipulating all other SOM classes and their object instances. Except for the fact that all of
the SOM Kernel functions and global variables are also included as part of this library, it is in
most other respects no different from any other SOM class library.

All of the OO constructs provided by SOM are ultimately expressed in terms of a small
number of function calls and data structures. Some of these are used to construct classes
and exercise the method resolution mechanisms (among other things) and hence, in turn,
permit the instantiation of objects and the invocation of methods on objects. The remainder
of the SOM Kernel is made up of methods supplied with the three built-in classes
(SOMObject, SOMClass, and SOMClassMgr). Generally speaking, most of SOM is
implemented as methods (in preference to functions), to permit user specialization through
normal OO subclassing, but some critical or heavily used constructs are implemented as
ordinary functions.

The binary interface to SOM is the substrate upon which the language bindings are built. It
consists of

• Addressing, calling conventions, and register usage.

• Class library organization.

• The representation of objects and object references.

• The data structures used for method resolution and basic operations.

• The kernel functions used to perform class construction and method resolution.

The remaining SOM Kernel functions and methods can be invoked and applied using this
basic set of mechanisms.

Some of the functions included in IBM implementations of the SOM Kernel library are
provided as a convenience for programmers doing SOM development on IBM platforms.
These functions are not required to be available in conforming SOM implementations from
other vendors. In this category are functions that provide debugging support and formatted
stream output. A list of mandatory and optional kernel functions is given in § 5.8, “SOM
Kernel Functions”, on page 48.

OS/2 Application Binary Interface for PowerPC (32-bit)

36 Release 1

Consult the SOMObjects Developer Toolkit Programmer’s Reference Manual for more
detailed descriptions and specifications of particular kernel functions and methods.

Release 1 37

System Object Model (SOM) Binary Interface

5.1 Addressing, Calling Conventions, and Register Usage
All addresses used in SOM are 32-bit addresses. SOM utilizes the standard system function
calling convention defined in § 4, “Procedure Linkage Conventions”, on page 21 for all
function and method calls.

OS/2 Application Binary Interface for PowerPC (32-bit)

38 Release 1

5.2 SOM Class Library Structure
A SOM class library contains the implementation of one or more SOM classes. Normally
each class in a SOM class library exports at least one function named
<className>NewClass and two data structures, ClassData named
<className>ClassData and auxiliary ClassData named <className>CClassData.
Additional functions and data structures may also be exported but these are not mandated
by SOM. We say “normally” because it is possible to construct a SOM class library without
these characteristics, but a SOM class without these exports does not offer a client
programmer the opportunity to utilize SOM’s offset (or static) method resolution mechanism.
(The offset method resolution mechanism provides the best performance and is the most
commonly employed form of SOM method resolution. Providers of SOM class libraries give
client programmers the most options by offering support for offset method resolution and
leaving the decision of whether or not to use it to the client programmer.) Typically both the
<className>NewClass function and the <className>ClassData and
<className>CClassData structures are generated automatically by the SOM Compiler as
part of its implementation bindings for a language or produced implicitly by a “Direct-to-SOM”
compiler.

The <className>NewClass function constructs, registers with the SOM Class Manager,
and returns to the caller, a SOM class object representing the class designated in its name.
This function is idempotent. To make it easy to write a <className>NewClass function by
hand, the SOM Kernel library includes a function named somBuildClass which can
perform all of these functions based on parameters provided by the caller.

The ClassData structure reflects the releaseorder modifier from the implementation section
of the class’ IDL specification. The “release order” is a linear ordering of all of the attributes,
methods, and public data introduced by the class; attributes, methods, or public data items
inherited by the class are not included. As newer releases of a class library appear this list
may change, but only by extension at the end. Even if a method has been refactored up into
one of its ancestor classes (and now appears in that class’ release order), its original position
in the release order of the class where it was first introduced is always maintained. Except
for the first member of the ClassData structure (which always points to the actual SOM class
object) each of its member elements corresponds directly to a release order item and is
referred to as a token. The tokens are classified as either a method token or a data token.
Method tokens are in reality thunks that can be called to perform SOM offset method
resolution. They can also be passed to the somResolve function (along with a target object)
in order to obtain a direct pointer to a method procedure.

The contents of the <className>ClassData structure are computed during the execution
of the <className>NewClass function (commonly by somBuildClass) and remain
usable for the life of the class. The first element in the ClassData structure is a pointer to the

Release 1 39

System Object Model (SOM) Binary Interface

class object (all SOM classes are represented by run-time class objects). The remainder of
the ClassData structure has one element for each item in the release order.

The <className>CClassData is an auxiliary structure that is also computed during the
construction of a class. (The “C” in the name of this structure is an artifact of its evolution and
is not otherwise meaningful). It contains information that may be used by SOM language
bindings and “Direct-to-SOM” compilers, such as a list of method table structures for the
class and its parent classes. This structure is not generally of direct interest to users of a
SOM class since the information in this structure can be obtained dynamically through
queries to the class object. By exporting it in this form, more efficient static references can
also be built into language bindings.

Figure 5-1: ClassData Structure

Offset

0
Pointer to the class object

See Figure 5-4, “SOM
Object and Object

Reference”

4 Token for 1st element in
release order

8 Token for 2nd element in
release order

12 Token for 3rd element in
release order

Tokens are opaque, but method tokens are
known to be thunks (callable).

...

Figure 5-2: Auxiliary ClassData Structure

Offset

0
Pointer to parentMtab list

See Figure 5-3,
“somParentMtabStruct

Structure”

4 Data token for instance data
introduced by this class

... The remainder of the structure is opaque.

OS/2 Application Binary Interface for PowerPC (32-bit)

40 Release 1

The somParentMtabStruct, pointed at by the first element of the auxiliary structure

contains a pointer to a somRenewNoInitNoZero thunk. This thunk provides support for
object creation very similar to the somRenewNoInitNoZero method. If the metaclass of the
object being created is SOMClass, invoking the thunk results in a fast object instance
creation. However, if the metaclass of the object is not SOMClass, the thunk will end up
invoking the somRenewNoInitNoZero method. The SOM API requires that
somRenewNoInitNoZero always be called when creating a new object whose metaclass is
not SOMClass. This is because metaclasses must be guaranteed that they can use
somRenewNoInitNoZero to track object creation if this is desired. In either case, a new
instance of the receiving class is created by setting the appropriate location in the passed
memory block to the receiving class’ instance method table. Unlike somNew, no space is
allocated. It is the callers responsibility to allocate space which is large enough to hold an
instance of the receiving class. The SOM method somGetInstanceSize can be invoked
on the class to determine the amount of memory required. A pointer to this allocated space is
passed in the call.

A dynamically linked class library is one that can be loaded or unloaded by the SOM class
manager (statically linked class libraries cannot be loaded or unloaded, although their
classes can be created and destroyed). Each dynamically linked class library is required to
provide a special library initialization function (one per library) that can be automatically
invoked whenever the library is loaded. One some platforms the operating system will invoke
this function. On platforms where the operating system does not provide this capability, the
SOM class manager will invoke a function named SOMInitModule which the library is then
expected to provide. This library initialization function is responsible for creating and
registering class objects for all of the classes in the library.

Figure 5-3: somParentMtabStruct Structure

Offset

0
Pointer to somMethodTab

See Figure 5-5,
“somMethodTab

Structure”

4
Pointer to the class object

See Figure 5-4, “SOM
Object and Object

Reference”

8 Pointer to
somRenewNoInitNoZero

 thunk

Reserved
...

Release 1 41

System Object Model (SOM) Binary Interface

5.3 SOM Objects and Object References
SOM objects are variable in length and semi-opaque. They are composed of two parts: a
method table pointer and an optional instance data section. The method table pointer is
found at offset 0 in every SOM object. The instance data section (if it exists) is the opaque
part. It is laid out according to the class of the object. Each class that contributes to the
derivation of the object’s class will have a unique portion of the instance data section,
appropriately aligned, to hold its instance data (if any). The layout of this data is known only
to the code that implements each of the contributing classes.

SOM object references are simply pointers to SOM objects.

The format of a SOM object and a SOM object reference is illustrated below.

Figure 5-4: SOM Object and Object Reference

Object Reference

Pointer to
object

Offset

0 Pointer to
somMethodTab

See Figure 5-5,
“somMethodTab

 Structure”

4 Instance data
section Instance data is opaque.

Object

OS/2 Application Binary Interface for PowerPC (32-bit)

42 Release 1

5.4 SOM Method Table
All SOM objects point to a data structure referred to as a method table. A SOM method table
is the principal data structure employed by the offset resolution mechanism. This structure is
owned by the class object and created during class initialization. Even classes that do not
support offset resolution must provide a method table, although in this case, no entries are
needed in the entry section. The SOM method table is semi-opaque. It consists of a fixed
section that holds class-related information, and a variable section containing an array of
entries. Entries are opaque and only used internally by SOM. They may include such things
as pointers to method procedures, redispatch stubs, interface identifiers, etc. A block
diagram of a SOM method table is shown below.

Figure 5-5: somMethodTab Structure

Offset

0
Pointer to class object

See Figure 5-4, “SOM
Object and Object

Reference”

4
Pointer to class information Opaque

8
Pointer to the class name Null-terminated string

12 Instance size

16 Reserved

20 Reserved

24 Reserved

28 Reserved

...

1st Entry Start of Entry Array is opaque and the entry
contents are opaque.

Release 1 43

System Object Model (SOM) Binary Interface

5.5 SOM Ids
Many commonly used methods in the SOM Kernel library refer to class names and method
names. To keep these operations as efficient as possible, class names and method names
are represented in a special form referred to as a somId. The somId form permits very rapid
string comparisons.

SomIds can be statically declared as literals in a program or generated dynamically during
program execution from strings. A statically declared somId goes through a transformation
during its first use which involves registering its value and computing a unique key for it. The

programmer need not be concerned with this transformation as it is performed automatically
by any of the SOM Kernel functions that operate on somIds. To subsequently re-extract the
string value from a somId, the somStringFromId function must be used. SomIds can also
be manufactured dynamically using the somIdFromString function. SomIds created in this
manner must be subsequently freed when they are no longer needed.

If it is known that the strings used to create somIds will exist for the life of the process, then
the creation of somIds can be significantly optimized using a persistent somId bracket. To
start a persistent somId bracket call the SOM Kernel function somBeginPersistentIds.
Thereafter all subsequent derivations of somIds from strings occurring in the same thread of
execution will assume that the string values will persist for the remainder of the process. To
end a persistent somId bracket simply call the somEndPersistentIds function.
Subsequently any somIds manufactured from strings on the same execution thread will not
be assumed to persist.

Figure 5-6: Statically Initialized somId

Before First Use

somId myClass = (somId) &myClassInitValue;

pointer

char myClassInitValue[] = “MyClass”;

M y C l a s s \0

After First Use

somId myClass;

[Opaque]

OS/2 Application Binary Interface for PowerPC (32-bit)

44 Release 1

5.6 Basic Operations
In order for any process to make use of SOM, it must first initialize the SOM Kernel by calling
the function somEnvironmentNew (SOM language bindings typically hide this requirement).
This function takes no arguments and is idempotent. It performs any needed SOM
initialization and returns an object reference for an instance of the SOMClassMgr class.
SOM initialization includes the construction of class objects for each of the built-in classes
and the instantiation of a single instance of the SOMClassMgr. This object can be
subsequently used to locate class objects and to load and unload dynamically linked SOM
Class libraries. After initialization has completed, the SOMClassMgrObject external
variable in the SOM Kernel library also contains an object reference for the single instance of
the SOMClassMgr. This external reference permits compiled programs to refer statically to
the SOM class manager.

Once the SOM environment has been initialized, four SOM objects exist. Three of them are
class objects; the fourth is the SOMClassMgrObject, usually just referred to as the SOM
class manager. SOM is now ready to perform basic operations such as subclassing and
method resolution. Subclassing involves the creation of a new class and is done by calling
the SOM Kernel function somBuildClass. The somBuildClass function is simply a
carefully sequenced invocation of methods provided by the built-in class SOMClass, and
based on descriptive information passed as arguments to somBuildClass.

Since other basic operations such as object instantiation and deinstantiation (freeing objects)
are performed by invoking methods on objects (frequently class objects), the remainder of
the SOM binary interface reduces to exercising the method resolutions mechanisms.

Release 1 45

System Object Model (SOM) Binary Interface

5.7 Method Resolution Mechanisms
SOM provides three different method resolution mechanisms: offset, name lookup, and
dispatch. Implementors of SOM classes decide which of these mechanisms their class will
support. If a class supports the offset method resolution mechanism, then a client
programmer may use any of the offset, name lookup, or dispatch mechanisms when invoking
its methods. If a class supports name lookup but not offset, then a client programmer may
use either the name lookup or dispatch mechanism. All SOM classes always support the
dispatch resolution mechanism.

Classes that support the offset method resolution mechanism have interfaces declared in
IDL and export a <className>ClassData structure. Classes that support name lookup,
but not offset resolution may have interfaces declared in IDL, but all methods not supporting
offset resolution must have the namelookup modifier attached to them. Classes that support
neither the offset nor the name lookup mechanism do not declare their methods in IDL at all
(unless as comments), and need not supply any IDL definition of the class itself, since no
static language bindings are provided. Finally, a class may have methods with a mixed level
of support. That is, some of its methods would be accessible via the offset, name lookup, or
dispatch mechanisms, while others would only be accessible using the name lookup or
dispatch mechanisms, with yet other methods only accessible via the dispatch mechanism.
All methods of all SOM classes are always accessible via the dispatch mechanism.

Most SOM class implementors provide implementations that support offset method
resolution, because it offers the best performance and gives client programmers their choice
of any of the three method resolution mechanisms.

5.7.1 Using Offset Method Resolution

The ClassData structure can be used to perform offset method resolution. Offset method
resolution is appropriate whenever the class that introduced the method and the name and
signature of the method to invoke are all known at compile-time. It offers a highly optimized
execution path for invoking a method. In SOM, the method tokens in the ClassData structure
are actually method resolution thunks, and invoking a method is achieved by simply calling
the appropriate thunk with the arguments needed for the method procedure (the receiving
object is always the first argument in this list).

Following is a typical offset method resolution method call.

Figure 5-7: Example Offset Method Resolution Method Call

assume GOT address in r31
mr %r3, <ARG1> # Pointer to receiving object
mr %r4, <ARG2> # argument 2
mr %r5, <ARG3> # argument 3

call <introducingClassName>ClassData.<methodName>
lwz %r11,<introducingClassName>ClassData@got(%r31)
lwz %r11,<methodName>(%r11) # offset into ClassData
mtctr %r11
bctrl

r3 now contains the result from the method procedure

OS/2 Application Binary Interface for PowerPC (32-bit)

46 Release 1

If it is known that the same method is going to be repeatedly invoked on one or more
instances of the same class, a pointer to the actual method procedure selected by offset
resolution can be obtained once and the method procedure can then be repeatedly called
through the pointer. The SOM Kernel function somResolve is used to obtain the method
procedure pointer from the target object and method token.

Method procedures may wish to invoke implementations inherited from one or more parent
classes. To do so using the offset resolution mechanism, the auxiliary ClassData structure
must be used. When a class is derived from other classes, its immediate parent classes are
specified using a linear ordering when the somBuildClass function is invoked. That
ordering is preserved by the parentMtab member in the <className>CClassData
structure, which contains a list of method tables for the class and each of its immediate
parent classes. For example to invoke an implementation of the method foo provided by the
2nd parent class from inside the method procedure for foo in class bar, the following
sequence could be used.

5.7.2 Using Name Lookup Method Resolution

Name lookup method resolution is appropriate whenever the method signature is known at
compile time but the name of the introducing class or the method name itself is not known at
compile time.

The name lookup method resolution mechanism can be exercised in several ways. The
easiest way is to call the SOM Kernel function somResolveByName, which takes a target
object and a method name in the form of a null-terminated string, and returns a method
procedure pointer. However, better performance and finer grain control over the name lookup
mechanism is available through the use of several class methods provided by the
implementation of SOMClass. These are somLookupMethod, somFindMethod,
somFindMethodOK, somFindSMethod, and somFindSMethodOK. These methods all
represent the method name as a somId, offer different calling sequences, provide different
failure modes, and in the case of the somFindSMethod limit their resolution to methods
which are statically defined. However, since all of these mechanisms are provided as
methods themselves, they must be invoked either by the offset resolution mechanism
described above, the somResolveByName kernel function, or using dispatch resolution,

Figure 5-8: Example Offset Method Resolution Parent Method Call

assume GOT address in r31
lwz %r3, barCClassData@got(%r31)
lwz %r3, parentMtab(%r3) # offset into CClassData
addi %r4, 0, 2 # Specify 2nd direct parent class
lwz %r5,<introducingClassName>ClassData@got(rGOT)
lwz %r5, foo(%r5) # offset into ClassData
bl somParentNumResolve
mtctr %r3 # parent method procedure pointer
mr %r3, <ARG1> # Pointer to receiving object
mr %r4, <ARG2> # argument 2
mr %r5, <ARG3> # argument 3
bctrl

r3 now contains the result from the method procedure

Release 1 47

System Object Model (SOM) Binary Interface

described in the next section. The quickest way to invoke one of the name lookup methods
is, of course, by using offset resolution.

5.7.3 Using Dispatch Method Resolution

The dispatch method resolution mechanism is appropriate whenever the method signature
itself is not known at compile time. The name of the method (in the form of a somId), a
memory area to hold any result value produced by the method, and a data structure that
contains all of the arguments needed for the method are all supplied as arguments to the
dispatch mechanism.

The dispatch resolution mechanism is available through the SOMObject method
somDispatch. Because somDispatch is implemented as a method it must be invoked
using offset or name lookup method resolution (it could also be invoked using the dispatch
resolution mechanism, but then you must readdress the question of how you resolve the
outer somDispatch method).

OS/2 Application Binary Interface for PowerPC (32-bit)

48 Release 1

5.8 SOM Kernel Functions

5.8.1 Required Functions

These functions are required in all conforming SOM implementations.

SOMClassMgrNewClass
SOMClassNewClass
SOMObjectNewClass
somAncestorResolve
somApply
somBeginPersistentIds
somBuildClass
somCallInitIfShould
somCheckId
somClassResolve
somCompareIds
somCreateDynamicClass
somDataResolve
somDataResolveChk
somEndPersistentIds
somEnvironmentNew
somExceptionId
somExceptionValue
somExceptionFree
somGetGlobalEnvironment
somIdFromString
somIsObj
somParentNumResolve
somPrintf
somRegisterId
somResolve
somResolveByName
somSetException
somSetExpectedIds
somStringFromId
somTestCls
somTotalRegIds
somUniqueKey
somVprintf

5.8.2 Optional Functions

These are optional debugging support functions provided in IBM implementations of SOM.

somAssert
somCheckArgs
somLprintf
somPrefixLevel
somTest

5.8.3 Obsolete Functions

These are obsolete functions provided for SOM 1.0 compatibility in IBM implementations of
SOM.

somConstructClass
somParentResolve

Release 1 49

System Object Model (SOM) Binary Interface

5.9 SOM Kernel External Variables

5.9.1 Required External Variables

These external variables are required in all conforming SOM implementations.

• Variables that are pointers to user-replaceable functions
SOMCalloc
SOMClassInitFuncName
SOMDeleteModule
SOMError
SOMFree
SOMLoadModule
SOMMalloc
SOMOutCharRoutine
SOMRealloc

• External data structures
SOMClassCClassData
SOMClassClassData
SOMClassMgrCClassData
SOMClassMgrClassData
SOMClassMgrObject
SOMObjectCClassData
SOMObjectClassData
SOM_IdTable
SOM_IdTableSize
SOM_MajorVersion
SOM_MinorVersion

5.9.2 Optional External Variables

These are optional debugging support variables found in IBM implementations of SOM.

SOM_AssertLevel
SOM_TraceLevel
SOM_WarnLevel

OS/2 Application Binary Interface for PowerPC (32-bit)

50 Release 1

5.10 SOM Kernel Class’ Release Order

5.10.1 SOMObject

somInit
somUninit
somFree
<reserved 1>
somGetClassName
somGetClass
somIsA
somRespondsTo
somIsInstanceOf
somGetSize
somDumpSelf
somDumpSelfInt
somPrintSelf
<reserved 2>
somDispatch
somClassDispatch

5.10.2 SOMClassMgr

somFindClsInFile
somFindClass
somClassFromId
somRegisterClass
somUnregisterClass
somLocateClassFile
somUnloadClassFile
somGetInitFunction
somMergeInto
somGetRelatedClasses
somSubstituteClass
_get_somInterfaceRepository
_set_somInterfaceRepository
_get_somRegisteredClasses

5.10.3 SOMClass

somNew
somRenew
somClassReady
somGetName
somDescendedFrom
somCheckVersion
somFindMethod
somFindMethodOK
somSupportsMethod
somGetNumMethods
somGetInstanceSize
somGetInstancePartSize
somGetMethodIndex
somGetNumStaticMethods
somGetPclsMtab
somGetClassMtab
somAddStaticMethod
somOverrideSMethod
somAddDynamicMethod
somFindSMethod

Release 1 51

System Object Model (SOM) Binary Interface

somFindSMethodOK
somGetMethodDescriptor
somGetNthMethodInfo
somSetClassData
somGetClassData
somNewNoInit
somRenewNoInit
somGetInstanceToken
somGetMemberToken
somSetMethodDescriptor
somGetMethodData
somOverrideMtab
somGetMethodToken
somGetParents
somGetPclsMtabs
somInitMIClass
somGetVersionNumbers
somLookupMethod
_get_somInstanceDataOffsets
somRenewNoZero
somRenewNoInitNoZero
somAllocate
somDeallocate
somGetRdStub
somGetNthMethodData

OS/2 Application Binary Interface for PowerPC (32-bit)

52 Release 1

Release 1 53

System Object Exception Handling

6 System Object Exception Handling
This chapter will explain the model and interfaces to support system object exception
handling. This chapter will be provided in a future release of this document.

OS/2 Application Binary Interface for PowerPC (32-bit)

54 Release 1

Release 1 55

Execution Model

7 Execution Model
This chapter discusses the execution model for programs conforming to this ABI. It also
provides code examples demonstrating function tags and how fundamental operations such
as function calls and data access can be performed.

OS/2 Application Binary Interface for PowerPC (32-bit)

56 Release 1

7.1 Code Model
The code model supported by this ABI is the Position Independent Code (PIC) model.
Instructions in this code model generally hold only relative addresses and not absolute
addresses. PIC code segments can be loaded at any virtual address in memory and execute
properly. Code segments containing absolute addresses will only execute properly if loaded
at a specific virtual address making the absolute addresses contained in the instructions
coincide with the instruction’s virtual addresses. This ABI specifies that both executables and
dynamic link libraries shall contain position independent code. The use of absolute code (i.e.
position dependent code) is not supported by the ABI and is non-conforming.

System V ABI Note: The System V Application Binary Interface, PowerPC Processor
Supplement specifies that executables use the absolute code model. This ABI specifies
that executables use the position independent code model.

When the system creates the process image from an executable and various dynamic link
libraries, the system chooses the virtual addresses at which the load segments in the load
modules will be loaded. With position independent code, the system loader can load the
code segments at any virtual address and the code will function correctly.

Position independent code relies on two techniques.

• Instructions which transfer control (e.g. branch instructions) either contain an address
relative to the virtual address of the instruction or use registers to hold the target
address. A relative branch instruction computes its target address in terms of a positive
or negative displacement from the virtual address of the instruction.

• When an absolute address is required, the program must compute it. Rather than
embedding absolute addresses in the instruction stream, the compiler emits code that
computes the needed address during execution.

The architecture of the PowerPC processor provides for both relative branch instructions and
branch instructions that utilize a target address contained in a register. This provides support
for the first technique above.

The Global Offset Table (GOT) is used in support of the second technique. The Global Offset
Table holds the absolute addresses that cannot be held in position independent code. The
position independent code obtains the addresses of memory objects from the GOT and can
then access the objects. Each load module that requires such an absolute address will
contain a GOT. The GOT for each load module is relocated by the system when the process
image is built to contain the proper absolute virtual addresses. See § 11.5, “Global Offset
Table (GOT)”, on page 135 for more details.

Additionally, the Procedure Linkage Table (PLT) is used to redirect calls to functions outside
the load module. Since the absolute address of the target function is not known until the
process image is created, the PLT is used as an intermediary to transfer control between
load modules. Each load module that calls functions external to the load module will contain
a PLT. The PLT for each load module is updated by the system when the process image is
built to contain the proper instructions to transfer control to the absolute address of the target
function. See § 11.6, “Procedure Linkage Table (PLT)”, on page 137 for more details.

Release 1 57

Execution Model

The use of the PLT does not affect the code generated to make functions calls. The same
code is used for intra-module and inter-module calls with the static linker redirecting calls to
the PLT as necessary. However, the use of the GOT does have impact on the code
generated to access data objects. Functions must contain code to establish addressability to
the GOT and code to access the GOT to obtain the desired absolute addresses. Example
code can be found in § 7.3, “Code Examples”.

Due to the processor’s architecture, there are two position independent code models: “small
model” and “large model”. The choice between the models is based upon a trade-off
between the efficiency of the code and the supported size of the Global Offset Table. The
small model supports a GOT up to 64K bytes in size (16384 entries) and has more efficient
code than the large model. If support for a GOT with greater than 16384 entries is required,
then the more general and less efficient large model should be used. Where applicable, code
examples of both models will be shown in § 7.3, “Code Examples”.

OS/2 Application Binary Interface for PowerPC (32-bit)

58 Release 1

7.2 Function Tags
Function tags provide a means of determining the contents of non-volatile registers as they
were when a function was entered. Each function shall be immediately preceded by a
function tag word. Given the address of the next instruction to be executed, an exception
handler or debugger can search the text towards lower addresses looking for a function tag.
Using the information in the function tag and the stack frame layout (specified in § 4.2, “Stack
Frames”, on page 25), the contents of the non-volatile registers at function entry can be
determined.

Function tag words are recognized by having bits 0-5 set to zero, which makes the word a
reserved or illegal instruction. A special degenerative form of the function tag word is
recognized. This is a zero word. If a compiler (or assembly programmer) does not support
function tag words as described in this section, then this special form of the tag word shall be
placed immediately before the function. This enables an exception handler or debugger to
locate this tag word and recognize that it is not possible to determine the contents of the non-
volatile registers as they were at function entry. Appropriate action can then be taken.

Note: All functions shall be preceded by a function tag word. The function tag word shall be
immediately followed by the first instruction of the function. The function tag word shall
be either the function tag word described in this section or the special degenerative
form of the function tag word (a zero word).

The following table describes the format of the function tag word. Bit 0 is the most significant
bit in the word and all tag words are stored using the data encoding specified in the ELF
header.

Table 7-1: Function Tag Word

Field Name Bit(s) Field Description

identifier 0-5 This field identifies the word as a function tag and contains
the value zero.

version 6-7 This field contains the function tag version number. The
current version is zero.

range 8-15 This field contains the number of words (instructions)
between the function tag and the first address at which the
stack frame has been acquired and the non-volatile registers
specified by this tag have been saved. At the end of this
interval, the non-volatile registers still contain the values they
had at function entry.

Note: This field may not contain zero unless either
long_form is one or lr_inreg is one.

Release 1 59

Execution Model

long_form 16 This bit specifies whether the function tag has long form
function tag information. If this bit is zero, then the function
tag does not have long form function tag information.
If this bit is one, then the next lower-addressed word than
this function tag word contains a signed offset from the
address of the function tag word to the long form function tag
information for this function (in the .tag section). See
§ 7.2.1, “Long Form Function Tag Information”, on page 60
for details of the long form tag information.

token_present 17 This bit specifies if a compiler-specific token is present. This
token may contain any value and can be used by the
compiler for any reason. If this bit is zero, then no token is
present.
If this bit is one, then a token is present. If long_form is
zero, then the next lower-addressed word than this function
tag word contains the token. If long_form is one, then the
token is contained in the next lower-addressed word than
the long form signed offset for this function tag word.

gpr31_nosave 18 This bit specifies if r31 participates in the saving of non-
volatile GPRs. If this bit is zero, then space for r31 is
allocated in the GPR save area of the stack frame (if non-
volatile GPRs are saved).
If this bit is one, then the function does not modify r31 and
no space for r31 is allocated in the GPR save area of the
stack frame (if non-volatile GPRs are saved) and r31 is not
saved. When this bit is set, r30 is stored at the highest
addressed word of the GPR save area of the stack frame.

alloca_gpr30 19 This bit specifies if the function uses r30 to hold the frame
pointer to the local variable area of the stack frame. This
may occur if dynamic stack space allocation is used. (See
§ 7.3.4, “Dynamic Stack Space Allocation”, on page 74.)
If this bit is zero, then r30 does not hold the frame pointer. If
this bit is one, then r30 holds the frame pointer to the local
variable area of the stack frame.

lr_inreg 20 This bit specifies where the value of LR at function entry can
be found. If this bit is zero, then the LR save word of the
previous stack frame contains the value of LR as it was at
function entry.
If this bit is one, then LR contains the value of LR as it was at
function entry.

Table 7-1: Function Tag Word (Continued)

Field Name Bit(s) Field Description

OS/2 Application Binary Interface for PowerPC (32-bit)

60 Release 1

7.2.1 Long Form Function Tag Information

Functions which intersperse saving some non-volatile registers with using other non-volatile
registers (i.e. functions that do not save all used non-volatile registers in the function
prologue and delay saving some or all used non-volatile registers until later in the function)
will need to use the long form function tag information to specify when the non-volatile
registers have been saved in the stack frame. The long form function tag information is not
stored in-line with the program instructions like the function tag words but is stored in the
.tags section and the in-line function tag has a signed offset to the long form function
information. The long form function tag information for a function consists of a sequence of
entries, each two words in size, describing a range of instructions in the function.

The following tables describe the two-word long form function tag information entries. The
first word, word 1, is the lowest addressed word of the two-word entry. Bit 0 is the most
significant bit in the word and all words are stored using the data encoding specified in the
ELF header.

cr_saved 21 This bit specifies if CR has been saved in the CR save word
of the stack frame. If this bit is zero, then CR has not been
saved in the CR save word of the stack frame
If this bit is one, then the CR save word of the stack frame
contains the value of CR as it was at function entry.

fpr_space 22-26 This field contains the size in doublewords of the FPR save
area of the stack frame. If long_form is zero, then all the
non-volatile FPRs implied by this field must be saved by the
end of the range of this function tag.
If long_form is one, then the long form function tag
information specifies the ranges where the non-volatile
FPRs are saved. This field merely indicates the size of the
FPR save area in the stack frame.

gpr_space 27-31 This field contains the size in words of the GPR save area of
the stack frame. If long_form is zero, then all the non-
volatile GPRs implied by this field (and gpr31_nosave)
must be saved by the end of the range of this function tag.
If long_form is one, then the long form function tag
information specifies the ranges where the non-volatile
GPRs are saved. This field merely indicates the size of the
GPR save area in the stack frame.

Table 7-1: Function Tag Word (Continued)

Field Name Bit(s) Field Description

Release 1 61

Execution Model

Table 7-2: Long Form Function Tag Information, Word 1

Field Name Bit(s) Field Description

range 0-13 This field contains the number of words (instructions)
between the end of the previous range (in the function tag
word, if this is the first long form function tag information
entry, or in the previous long form function tag information
entry) and the first address at which the non-volatile
registers specified by this tag have been saved. At the end
of this range, the non-volatile registers that were saved
during this range still contain the values they had at function
entry.

fpr_saved 14-31 This field contains one bit for each non-volatile FPR. The
most significant bit represents f14 and the least significant
bit represents f31.
If a bit is zero, then the corresponding FPR has not been
saved in the appropriate place in the FPR save area of the
stack frame. If a bit is one, then the corresponding FPR has
been saved in the appropriate place in the FPR save area of
the stack frame.

Table 7-3: Long Form Function Tag Information, Word 2

Field Name Bit(s) Field Description

last_entry 0 This bit specifies if this entry is the last entry in the sequence
of long form function tag information entries for a function. If
this bit is zero, then this entry is immediately followed by
another entry for this function.
If this bit is one, then this entry is the last entry for this
function.

reserved 1-6 These bits are reserved and shall contain zero.

alloca_gpr 7-11 This field specifies if the function uses a GPR to hold a frame
pointer to the local variable area of the stack frame. This
may occur if dynamic stack space allocation is used. (See
§ 7.3.4, “Dynamic Stack Space Allocation”, on page 74.)
If this field is zero, then there is no frame pointer. If this field
is non-zero, then the field holds the register number of the
GPR used as the frame pointer to the local variable area of
the stack frame.

OS/2 Application Binary Interface for PowerPC (32-bit)

62 Release 1

lr_inreg 12 This bit specifies where the value of LR at function entry can
be found. If this bit is zero, then the LR save word of the
previous stack frame contains the value of LR as it was at
function entry.
If this bit is one, then LR contains the value of LR as it was at
function entry.

cr_saved 13 This bit specifies if CR has been saved in the CR save word
of the stack frame. If this bit is zero, then CR has not been
saved in the CR save word of the stack frame
If this bit is one, then the CR save word of the stack frame
contains the value of CR as it was at function entry.

gpr_saved 14-31 This field contains one bit for each non-volatile GPR. The
most significant bit represents r14 and the least significant
bit represents r31.
If a bit is zero, then the corresponding GPR has not been
saved in the appropriate place in the GPR save area of the
stack frame. If a bit is one, then the corresponding GPR has
been saved in the appropriate place in the GPR save area of
the stack frame.

Table 7-3: Long Form Function Tag Information, Word 2 (Continued)

Field Name Bit(s) Field Description

Release 1 63

Execution Model

7.3 Code Examples
The code examples in this section illustrate how operations may be done but not how they
must be done. The examples will be a mixture of ANSI C and PowerPC assembler code but
programming languages other than ANSI C may choose to use the same conventions
demonstrated in the examples. However, failure to do so does not prevent a program from
conforming to the ABI.

The examples below are simplified code fragments and are not meant to show optimal code
sequences or reproduce compiler-generated code. They are intended to explain the
execution model and demonstrate concepts.

7.3.1 Function Prologue and Epilogue

This section provides code examples for function prologues and epilogues. A function
prologue acquires a stack frame if necessary, and saves any non-volatile registers used by
the function. A function epilogue “unwinds” the work done by the prologue by restoring the
non-volatile registers and releasing the stack frame before returning to the caller. See § 4.2,
“Stack Frames”, on page 25 for the rules regarding stack frames.

A compiler may generate in-line code to save and restore the non-volatile registers used by
the function. However, if many non-volatile registers must be preserved, it may be more
efficient for the compiler to generate a call to a compiler-supplied support routine which
performs the saves or restores. Following are some examples of support routines which
perform these functions.

Note: The routines below rely on an address passed in the volatile register r11. Therefore
these routines must be statically-linked into the same load module as the caller.

OS/2 Application Binary Interface for PowerPC (32-bit)

64 Release 1

The _savefpr_n_l routines save the non-volatile FPRs n through 31 in the new stack
frame and LR in the previous stack frame. The routines take two parameters.

• r0 shall contain the value of LR at entry to the function whose prologue called this
routine.

• r11 shall contain the address of the word immediately following the FPR save area. This
is also the address of the previous stack frame.

Figure 7-1: _savefpr_n_l Routines

.word 0 # tag word
_savefpr_14_l: stfd %f14, -144(%r11)
_savefpr_15_l: stfd %f15, -136(%r11)
_savefpr_16_l: stfd %f16, -128(%r11)
_savefpr_17_l: stfd %f17, -120(%r11)
_savefpr_18_l: stfd %f18, -112(%r11)
_savefpr_19_l: stfd %f19, -104(%r11)
_savefpr_20_l: stfd %f20, -96(%r11)
_savefpr_21_l: stfd %f21, -88(%r11)
_savefpr_22_l: stfd %f22, -80(%r11)
_savefpr_23_l: stfd %f23, -72(%r11)
_savefpr_24_l: stfd %f24, -64(%r11)
_savefpr_25_l: stfd %f25, -56(%r11)
_savefpr_26_l: stfd %f26, -48(%r11)
_savefpr_27_l: stfd %f27, -40(%r11)
_savefpr_28_l: stfd %f28, -32(%r11)
_savefpr_29_l: stfd %f29, -24(%r11)
_savefpr_30_l: stfd %f30, -16(%r11)
_savefpr_31_l: stfd %f31, -8(%r11)

stw %r0, 4(%r11)
blr

Release 1 65

Execution Model

The _restfpr_n_l routines restore the non-volatile FPRs n through 31, restore LR, release
the stack frame and return to the caller of the function whose epilogue branched to this
routine. The routines take one parameter.

• r11 shall contain the address of the word immediately following the FPR save area. This
is also the address of the previous stack frame.

Figure 7-2: _restfpr_n_l Routines

.word 0 # tag word
_restfpr_14_l: lfd %f14, -144(%r11)
_restfpr_15_l: lfd %f15, -136(%r11)
_restfpr_16_l: lfd %f16, -128(%r11)
_restfpr_17_l: lfd %f17, -120(%r11)
_restfpr_18_l: lfd %f18, -112(%r11)
_restfpr_19_l: lfd %f19, -104(%r11)
_restfpr_20_l: lfd %f20, -96(%r11)
_restfpr_21_l: lfd %f21, -88(%r11)
_restfpr_22_l: lfd %f22, -80(%r11)
_restfpr_23_l: lfd %f23, -72(%r11)
_restfpr_24_l: lfd %f24, -64(%r11)
_restfpr_25_l: lfd %f25, -56(%r11)
_restfpr_26_l: lfd %f26, -48(%r11)
_restfpr_27_l: lfd %f27, -40(%r11)
_restfpr_28_l: lfd %f28, -32(%r11)
_restfpr_29_l: lfd %f29, -24(%r11)
_restfpr_30_l: lfd %f30, -16(%r11)
_restfpr_31_l: lwz %r0, 4(%r11)

lfd %f31, -8(%r11)
mtlr %r0
ori %r1, %r11, 0
blr

OS/2 Application Binary Interface for PowerPC (32-bit)

66 Release 1

There are two versions of the non-volatile GPR save and restore routines. The
_savegpr_n_l and _restgpr_n_l routines are used when no non-volatile FPRs need to
be preserved by the function. The _savegpr_n and _restgpr_n routines are used when
non-volatile FPRs need to be preserved by the function and _savefpr_n_l and
_restfpr_n_l routines are being used.

The _savegpr_n_l routines save the non-volatile GPRs n through 31 in the new stack
frame and LR in the previous stack frame. The routines take two parameters.

• r0 shall contain the value of LR at entry to the function whose prologue called this
routine.

• r11 shall contain the address of the word immediately following the GPR save area.
Since there is no FPR save area in the stack frame, the address in r11 is also the
address of the previous stack frame.

Figure 7-3: _savegpr_n_l Routines

.word 0 # tag word
_savegpr_14_l: stw %r14, -72(%r11)
_savegpr_15_l: stw %r15, -68(%r11)
_savegpr_16_l: stw %r16, -64(%r11)
_savegpr_17_l: stw %r17, -60(%r11)
_savegpr_18_l: stw %r18, -56(%r11)
_savegpr_19_l: stw %r19, -52(%r11)
_savegpr_20_l: stw %r20, -48(%r11)
_savegpr_21_l: stw %r21, -44(%r11)
_savegpr_22_l: stw %r22, -40(%r11)
_savegpr_23_l: stw %r23, -36(%r11)
_savegpr_24_l: stw %r24, -32(%r11)
_savegpr_25_l: stw %r25, -28(%r11)
_savegpr_26_l: stw %r26, -24(%r11)
_savegpr_27_l: stw %r27, -20(%r11)
_savegpr_28_l: stw %r28, -16(%r11)
_savegpr_29_l: stw %r29, -12(%r11)
_savegpr_30_l: stw %r30, -8(%r11)
_savegpr_31_l: stw %r31, -4(%r11)

stw %r0, 4(%r11)
blr

Release 1 67

Execution Model

The _restgpr_n_l routines restore the non-volatile GPRs n through 31, restore LR,
release the stack frame and return to the caller of the function whose epilogue branched to
this routine. The routines take one parameter.

• r11 shall contain the address of the word immediately following the GPR save area.
Since there is no FPR save area in the stack frame, the address in r11 is also the
address of the previous stack frame.

Figure 7-4: _restgpr_n_l Routines

.word 0 # tag word
_restgpr_14_l: lwz %r14, -72(%r11)
_restgpr_15_l: lwz %r15, -68(%r11)
_restgpr_16_l: lwz %r16, -64(%r11)
_restgpr_17_l: lwz %r17, -60(%r11)
_restgpr_18_l: lwz %r18, -56(%r11)
_restgpr_19_l: lwz %r19, -52(%r11)
_restgpr_20_l: lwz %r20, -48(%r11)
_restgpr_21_l: lwz %r21, -44(%r11)
_restgpr_22_l: lwz %r22, -40(%r11)
_restgpr_23_l: lwz %r23, -36(%r11)
_restgpr_24_l: lwz %r24, -32(%r11)
_restgpr_25_l: lwz %r25, -28(%r11)
_restgpr_26_l: lwz %r26, -24(%r11)
_restgpr_27_l: lwz %r27, -20(%r11)
_restgpr_28_l: lwz %r28, -16(%r11)
_restgpr_29_l: lwz %r29, -12(%r11)
_restgpr_30_l: lwz %r30, -8(%r11)
_restgpr_31_l: lwz %r0, 4(%r11)

lwz %r31, -4(%r11)
mtlr %r0
ori %r1, %r11, 0
blr

OS/2 Application Binary Interface for PowerPC (32-bit)

68 Release 1

After using a _savefpr_n_l routine, a _savegpr_n routine can be used to save non-
volatile GPRs. The _savegpr_n routines save the non-volatile GPRs n through 31 in the
new stack frame. The routines take one parameter.

• r11 shall contain the address of the word immediately following the GPR save area.

Figure 7-5: _savegpr_n Routines

.word 0 # tag word
_savegpr_14: stw %r14, -72(%r11)
_savegpr_15: stw %r15, -68(%r11)
_savegpr_16: stw %r16, -64(%r11)
_savegpr_17: stw %r17, -60(%r11)
_savegpr_18: stw %r18, -56(%r11)
_savegpr_19: stw %r19, -52(%r11)
_savegpr_20: stw %r20, -48(%r11)
_savegpr_21: stw %r21, -44(%r11)
_savegpr_22: stw %r22, -40(%r11)
_savegpr_23: stw %r23, -36(%r11)
_savegpr_24: stw %r24, -32(%r11)
_savegpr_25: stw %r25, -28(%r11)
_savegpr_26: stw %r26, -24(%r11)
_savegpr_27: stw %r27, -20(%r11)
_savegpr_28: stw %r28, -16(%r11)
_savegpr_29: stw %r29, -12(%r11)
_savegpr_30: stw %r30, -8(%r11)
_savegpr_31: stw %r31, -4(%r11)

blr

Release 1 69

Execution Model

Before using a _restfpr_n_l routine, a _restgpr_n routine can be used to restore non-
volatile GPRs. The _restgpr_n routines restore the non-volatile GPRs n through 31 from
the stack frame. The routines take one parameter.

• r11 shall contain the address of the word immediately following the GPR save area.

Note: The Load/Store Multiple instructions should not be used because they are generally
slower than a collection of individual register loads/stores and they also cause
alignment exceptions in the Little Endian mode of the processor.

If any of the non-volatile fields of CR are used, then CR must also be saved by the prologue
and restored by the epilogue.

A function that makes references to static data will need to establish addressability to the
Global Offset Table. If static data references are only made within conditional code, then
establishing addressability to the Global Offset Table can be deferred until it is known to be
needed. See § 11.5, “Global Offset Table (GOT)”, on page 135 for more information.

Figure 7-6: _restgpr_n Routines

.word 0 # tag word
_restgpr_14: lwz %r14, -72(%r11)
_restgpr_15: lwz %r15, -68(%r11)
_restgpr_16: lwz %r16, -64(%r11)
_restgpr_17: lwz %r17, -60(%r11)
_restgpr_18: lwz %r18, -56(%r11)
_restgpr_19: lwz %r19, -52(%r11)
_restgpr_20: lwz %r20, -48(%r11)
_restgpr_21: lwz %r21, -44(%r11)
_restgpr_22: lwz %r22, -40(%r11)
_restgpr_23: lwz %r23, -36(%r11)
_restgpr_24: lwz %r24, -32(%r11)
_restgpr_25: lwz %r25, -28(%r11)
_restgpr_26: lwz %r26, -24(%r11)
_restgpr_27: lwz %r27, -20(%r11)
_restgpr_28: lwz %r28, -16(%r11)
_restgpr_29: lwz %r29, -12(%r11)
_restgpr_30: lwz %r30, -8(%r11)
_restgpr_31: lwz %r31, -4(%r11)

blr

OS/2 Application Binary Interface for PowerPC (32-bit)

70 Release 1

The following sample code demonstrates full non-volatile FPR and GPR saves, a CR save
and establishing addressability to the Global Offset Table. A stack frame size of less than
32K bytes is assumed.

Figure 7-7: Function Prologue and Epilogue Sample Code (Small Stack)

.word 0x00080652 # tag word
function: ori %r11, %r1, 0 # r11=address previous frame

stwu %r1, -240(%r1) # acquire new frame
mflr %r0 # set r0 to lr
bl _savefpr_14_l # save lr, f14-f31
addi %r11, %r11, -144 # set r11 for _savegpr
bl _savegpr_14 # save r14-r31
mfcr %r0 # set r0 to cr
stw %r0, -76(%r11) # save cr
...
bl _GLOBAL_OFFSET_TABLE_-4
mflr %r31 # r31=GOT reference address
...
addi %r11, %r1, 96 # set r11 for _restgpr
lwz %r0, -76(%r11) # set r0 to original cr
mtcrf 0x38, %r0 # restore non-volatile fields
bl _restgpr_14 # restore r14-r31
addi %r11, %r1, 240 # r11=address previous frame
b _restfpr_14_l # restore f14-f31, lr and ret

Release 1 71

Execution Model

The following sample code demonstrates acquiring a stack frame greater than 32K bytes in
size, an in-line save of non-volatile GPRs and establishing addressability to the Global Offset
Table.

7.3.2 Static Data Access

This section demonstrates accessing data objects with static storage duration. Instructions in
the PowerPC Architecture cannot hold 32-bit addresses and position independent code does
not contain absolute addresses. So in order to access a static data object, the Global Offset
Table entry for the static data object is referenced to get its absolute address. An automatic
data object, which is resident on the stack, can be accessed relative to the stack frame
pointer.

In order to locate an entry in the GOT, two pieces of information are needed. First the
reference address of the GOT needs to be computed and second the offset of the GOT entry
from the reference address must be known. See § 7.3.1, “Function Prologue and Epilogue”,
above for example code that establishes the reference address of the GOT. The offset of the
GOT entry is supplied by the static linker when the load module is built.

In the examples in this section, we will assume that the reference address of the GOT has
already been loaded into r31. The assembly syntax symbol@got denotes the offset of the
GOT entry for the symbol symbol from the GOT reference address. This assumes the
“small” code model where the offset can be represented as a signed 16-bit value. For “large”
code model, where offsets may be larger, the assembly syntax symbol@got@ha,
symbol@got@h, and symbol@got@l is used to denote the high-adjusted 16-bits, the high
16-bits and the low 16-bits of the offset of the GOT entry for the symbol symbol from the

Figure 7-8: Function Prologue and Epilogue Sample Code (Large Stack)

.word 0x00080002 # tag word
function: ori %r11, %r1, 0 # r11=address previous frame

addis %r12, 0, -1 # set r12 to the complement of
addi %r12, %r12, 65536-40016 # stack frame size(40016)
stwux %r1, %r1, %r12 # acquire new frame
mflr %r0 # set r0 to lr
stw %r30, -8(%r11) # save r30
stw %r31, -4(%r11) # save r31
stw %r0, 4(%r11) # save lr in previous frame
ori %r30, %r11, 0 # r30=address previous frame
...
bl _GLOBAL_OFFSET_TABLE_-4
mflr %r31 # r31=GOT reference address
...
ori %r11, %r30, 0 # r11=address previous frame
lwz %r0, 4(%r11) # set r0 to lr
lwz %r30, -8(%r11) # restore r30
lwz %r31, -4(%r11) # restore r31
mtlr %r0 # restore lr
ori %r1, %r11, 0 # release stack frame
blr # return to caller

OS/2 Application Binary Interface for PowerPC (32-bit)

72 Release 1

GOT reference address. (See § 9.1.2.3.1, “Relocation Types”, on page 106 for a
mathematical description of @ha, @h and @l.)

Figure 7-9: Static Data Access (Small Model)

extern int src;
extern int dst;
extern int *ptr;

Assume r31 contains the GOT reference
address

dst = src; lwz %r11, src@got(%r31)
lwz %r12, dst@got(%r31)
lwz %r0, 0(%r11)
stw %r0, 0(%r12)

ptr = &dst; lwz %r0, dst@got(%r31)
lwz %r12, ptr@got(%r31)
stw %r0, 0(%r12)

*ptr = src; lwz %r11, src@got(%r31)
lwz %r12, ptr@got(%r31)
lwz %r0, 0(%r11)
lwz %r12, 0(%r12)
stw %r0, 0(%r12)

Figure 7-10: Static Data Access (Large Model)

extern int src;
extern int dst;
extern int *ptr;

Assume r31 contains the GOT reference
address

dst = src; addis %r11, %r31, src@got@ha
lwz %r11, src@got@l(%r11)
addis %r12, %r31, dst@got@ha
lwz %r12, dst@got@l(%r12)
lwz %r0, 0(%r11)
stw %r0, 0(%r12)

ptr = &dst; addis %r11, %r31, dst@got@ha
lwz %r0, dst@got@l(%r11)
addis %r12, %r31, ptr@got@ha
lwz %r12, ptr@got@l(%r12)
stw %r0, 0(%r12)

*ptr = src; addis %r11, %r31, src@got@ha
lwz %r11, src@got@l(%r11)
addis %r12, %r31, ptr@got@ha
lwz %r12, ptr@got@l(%r12)
lwz %r0, 0(%r11)
lwz %r12, 0(%r12)
stw %r0, 0(%r12)

Release 1 73

Execution Model

7.3.3 Function Calls

This section demonstrates making direct and indirect (through a pointer) function calls. The
bl instruction is used to make direct function calls. The bl instruction is a self-relative
branch instruction with a target branch displacement of ±32MB. This provides a potential
limit on the size of load modules (and also on the location of the Global Offset Table and
Procedure Linkage Table).

The bl instruction can be used to call functions in the same load module or in a different
load module. If the function is in a different load module, then the static linker will redirect the
bl instruction to a PLT entry which the dynamic linker will arrange to point to the target
function.

For indirect function calls, a bctrl (or blrl) instruction can be used.

Figure 7-11: Direct Function Call

extern void func();

func(); bl func

Figure 7-12: Indirect Function Call (Small Model)

extern void func();
extern void (*ptr)();

Assume r31 contains the GOT reference
address

ptr = func; lwz %r0, func@got(%r31)
lwz %r12, ptr@got(%r31)
stw %r0, 0(%r12)

(*ptr)(); lwz %r12, ptr@got(%r31)
lwz %r0, 0(%r12)
mtctr %r0
bctrl

Figure 7-13: Indirect Function Call (Large Model)

extern void func();
extern void (*ptr)();

Assume r31 contains the GOT reference
address

ptr = func; addis %r11, %r31, func@got@ha
lwz %r0, func@got@l(%r11)
addis %r12, %r31, ptr@got@ha
lwz %r12, ptr@got@l(%r12)
stw %r0, 0(%r12)

(*ptr)(); addis %r12, %r31, ptr@got@ha
lwz %r12, ptr@got@l(%r12)
lwz %r0, 0(%r12)
mtctr %r0
bctrl

OS/2 Application Binary Interface for PowerPC (32-bit)

74 Release 1

7.3.4 Dynamic Stack Space Allocation

The C language does not require dynamic stack space allocation within a stack frame. Stack
frames are dynamically allocated on the stack with individual frames having static sizes,
based upon program execution. For other languages that need dynamic stack space
allocation, it is supported by the architecture and the procedure linkage conventions. Thus
functions written in these languages can call C functions and vice versa.

Figure 7-14, “Dynamic Stack Space Allocation”, shows the stack frame before and after
dynamic stack space allocation. Dynamic stack space allocation is accomplished by
“opening” the stack frame between the local variable area and the parameter list area.

The register save area and the local variable area do not change in size or position as a
result of the dynamic stack space allocation. The parameter list area is required by the
procedure linkage conventions to be at a fixed offset from the stack pointer (r1), so this area
must move when dynamic stack space allocation occurs. When this occurs, the offsets from
the stack pointer to the local variable area change. To ensure addressability, a frame pointer
must be established to address the local variable area (and register save areas) consistently
throughout the function’s activation.

Dynamic stack space allocation requires the following steps.

1. After the stack frame has been acquired at function entry and before the first
dynamic stack space allocation, a register is set to the value of the stack pointer.
This register is the frame pointer and is used to reference data in the local variable
area. The function tag word for the function shall specify the register used as the
frame pointer.

2. The size of the dynamic space to be allocated is rounded up to the next 16 byte
multiple to maintain the stack’s 16 byte alignment.

Figure 7-14: Dynamic Stack Space Allocation

Before Allocation

register save areas

local variable area

parameter list area

LR save word

Back chainr1

After Allocation

register save areas

local variable area

Dynamic Stack Space
Allocation

parameter list area

LR save word

Back chainr1

Release 1 75

Execution Model

3. The stack pointer is decreased by the amount determined in step 2 and then the
back chain value is copied to its new location.

The following code examples demonstrate allocating dynamic stack space. The first example
allocates a 256 byte space and the second example allocates a 40,000 byte space. A “Store
Word with Update” instruction is used to allocate the stack space. This ensures that the stack
pointer chain is always preserved.

The process of dynamically allocating stack space can be repeated as many times as
necessary within a function’s activation. When the function returns, the stack pointer is set to
the back chain value which releases all of the dynamically allocated stack space along with
the rest of the stack frame. Naturally, dynamically allocated stack space must not be
referenced after the stack frame has been released.

Even in the presence of exceptions or signals, the dynamic allocation process is safe. If
dynamic stack space allocation is interrupted, one of three thing can happen.

• The exception or signal handler can return. The dynamic allocation is resumed from the
point of interruption.

• The exception or signal handler can execute a non-local goto, or longjmp. The thread
context is changed to a previous stack frame, automatically discarding the current stack
frame including the dynamic allocation.

• The process (or thread) can terminate.

Regardless of when the interruption occurs during the dynamic stack space allocation, the
result is a consistent, though possibly dead, process.

Figure 7-15: Dynamic Stack Space Allocation Sample Code (Small)

ori %r30, %r1, 0 # r30=frame pointer
...
lwz %r11, 0(%r1) # r11=back chain pointer
stwu %r11, -256(%r1) # allocate stack and set back chain

Figure 7-16: Dynamic Stack Space Allocation Sample Code (Large)

ori %r30, %r1, 0 # r30=frame pointer
...
lwz %r11, 0(%r1) # r11=back chain pointer
addis %r12, 0, -1 # set r12 to the complement of
addi %r12, %r12, 65536-40000 # the allocation size (40000)
stwux %r11, %r1, %r12 # allocate stack and set back chain

OS/2 Application Binary Interface for PowerPC (32-bit)

76 Release 1

Release 1 77

Resource File Format

8 Resource File Format
This chapter describes the format of resource files and resource collections. Resources are
read-only data with the following usage restrictions.

• Resources must be attached to valid load modules.

• Resources can only be accessed via operating system-specific APIs.

• Resources are only mapped into memory by the operating system-specific APIs.

• Resource data may have no relocations and no code may have relocations that refer to
the resource data.

From the application view, resources are high-level language-independent, structured data
that are used by applications, but are understood by the operating system. E.g. fonts,
bitmaps, icons, dialogs. See OS/2 for an example of an operating system that uses
resources.

OS/2 Application Binary Interface for PowerPC (32-bit)

78 Release 1

8.1 Resource File
A resource file is a load module format-independent file created by a resource compiler. It
can contain many uniquely named resource collections and can be converted in to a form
suitable for attachment to a load module. This is typically an object file with one SHT_RES
section per resource collection. The static linker will take this object file as input, along with
the other object files that contribute to the load module, and place each resource collection in
the resultant load module as a PT_RES segment.

8.1.1 Resource File Header

A resource file begins with a resource file header.

Each entry in the resource collection array is an Res32_Col structure. This structure
contains the offset and size of a resource collection.

Figure 8-1: Resource File Header, Res32_File

#define RF_NIDENT 16

typedef struct
{

unsigned char rf_ident[RF_NIDENT];
Elf32_Word rf_rfsize;
Elf32_Word rf_rcnum;
Elf32_Off rf_rcoff;

} Res32_File;

Member Description

rf_ident The initial bytes which identify this as a resource file and
provide machine-independent data with which to decode and
interpret the contents. See § 8.1.2, “Resource File
Identification”, on page 79 for details.

rf_rfsize This member holds the resource file header’s size in bytes.

rf_rcnum This member holds the number of resource collections in this
resource file.

rf_rcoff This member holds the offset of the resource collection array.
The offset is relative to the start of the resource file and shall
be word aligned. There are rf_rcnum entries in the array.

Figure 8-2: Resource Collection Array Entry, Res32_Col

typedef struct
{

Elf32_Off rc_collection;
Elf32_Word rc_size;

} Res32_Col;

Release 1 79

Resource File Format

Each resource collection must be self contained and occupy only the space in the resource
file beginning at offset rc_collection having a length of rc_size bytes. All offsets within
a resource collection must be relative to the start of the resource collection.

8.1.2 Resource File Identification

Following is a description of the rf_ident member of the resource file header.

Member Description

rc_collection This member holds the offset of a resource collection. The
offset is relative to the start of the resource file and shall be
word aligned. See § 8.2, “Resource Collection”, on page 81 for
details on resource collections.

rc_size This member holds the total size of the resource collection in
bytes.

Table 8-1: rf_ident[] Identification Indexes

Name Value Description

RF_MAG0
RF_MAG1
RF_MAG2
RF_MAG3

0
1
2
3

0x02
‘R’
‘E’
‘S’

The first 4 bytes hold a “magic number” identifying this as a
resource file.

RF_CLASS 4 Class of the data in this resource file.

Figure 8-2: Resource Collection Array Entry, Res32_Col (Continued)

Name Value Meaning

RESCLASSNONE 0 Invalid class

RESCLASS32 1 32 bit architecture. This is the
format of the data specified
herein.

RESCLASS64 2 This is reserved for 64 bit
architectures. It is otherwise
unspecified.

OS/2 Application Binary Interface for PowerPC (32-bit)

80 Release 1

8.1.3 Resource File PowerPC Processor-specific Information

This section documents the Resource File information specific to the PowerPC processor.

The rf_ident member shall contain the following identification values.

RF_DATA 5 Data encoding of the data in this resource file.

RF_VERSION 6 Resource file version.

RF_PAD 7 Start of padding bytes. These bytes are reserved and set to
zero. The value of RF_PAD will change if currently unused
bytes take on meaning.

Table 8-2: Resource File Identification, rf_ident

Position Value Meaning

rf_ident[RF_CLASS] RESCLASS32 32-bit implementation

rf_ident[RF_DATA] RESDATA2LSB Little Endian implementation

Table 8-1: rf_ident[] Identification Indexes (Continued)

Name Value Description

Name Value Meaning

RESDATANONE 0 Invalid data

RESDATA2LSB 1 Little Endian data encoding

RESDATA2MSB 2 Big Endian data encoding

Name Value Meaning

RV_NONE 0 Invalid version

RV_CURRENT 1 Current version. The value of
RV_CURRENT will change as
necessary to reflect the
current version.

Release 1 81

Resource File Format

8.2 Resource Collection
A resource collection is a collection of individual resource items each identified by a unique
type and ordinal pair with an optional name (unique within type).

Resource collections are self-contained. All information about the individual resource items
are contained within the resource collection. All offsets within a resource collection must be
relative to the start of the resource collection. A resource collection includes the resource
collection header, the locale information, the resource item array, the resource collection
string table and all the resource data.

8.2.1 Resource Header

A resource collection begins with a resource header.

Figure 8-3: Resource Header, Res32_Hdr

typedef struct
{

Elf32_Half rh_version;
Elf32_Half rh_flags;
Elf32_Off rh_name;
Elf32_Off rh_rioff;
Elf32_Word rh_rientsize;
Elf32_Word rh_rinum;
Elf32_Word rh_rhsize;
Elf32_Off rh_strtab;
Elf32_Off rh_locale;

} Res32_Hdr;

Member Description

rh_version This member holds the resource collection version. The
current version is 1.

rh_flags This member holds the resource collection flags. There are
currently no flags defined.

rh_name This member specifies the name of the resource collection. Its
value is an index into the resource string table. See
rh_strtab below.

rh_rioff This member holds the offset of the resource item array. The
offset is relative to the start of the resource collection and shall
be word aligned. There are rh_rinum entries in the array. See
§ 8.3, “Resource Item”, on page 83 for details on resource
items.

rh_rientsize This member holds the size, in bytes, of a resource item array
entry.

rh_rinum This member holds the number of resources in the collection.

OS/2 Application Binary Interface for PowerPC (32-bit)

82 Release 1

A resource collection may contain resources specific to certain locale. In this case the
rh_locale member of the resource collection header will hold the offset of the information
identifying the locale to which the resource collection applies. If the resource collection is not
locale specific, then the rh_locale member holds zero indicating no specific locale. The
resource collection locale information is detailed below.

rh_rhsize This member holds the resource header’s size in bytes.

rh_strtab This member holds the offset of the resource string table. The
offset is relative to the start of the resource collection. The
format of the string table is identical to that of a standard ELF
string table. The resource string table shall be located at the
end of the resource collection.

rh_locale This member holds the offset of the locale information. The
offset is relative to the start of the resource collection and shall
be word aligned. The locale information, if present, shall
immediately follow the resource header. The locale information
is detailed below.

Figure 8-4: Resource Collection Locale Information, Res32_Locale

typedef struct
{

Elf32_Half rl_country[2];
Elf32_Half rl_language[2];

} Res32_Locale;

Member Description

rl_country This member holds the two character UNICODE
representation of the country.

rl_language This member holds the two character UNICODE
representation of the language.

Figure 8-3: Resource Header, Res32_Hdr (Continued)

Release 1 83

Resource File Format

8.3 Resource Item
A resource collection contains an array of resource items, with one resource item for each
resource in the collection. A resource item describes the resource and provides a pointer to
it’s data.

The resource items shall be sorted by ri_type in ascending order. Within each ri_type
they shall be further sorted by ri_ordinal in ascending order. This allows for a resource
(type, ordinal) pair to be located via binary search.

Figure 8-5: Resource Item, Res32_Item

typedef struct
{

Elf32_Word ri_type;
Elf32_Word ri_ordinal;
Elf32_Off ri_name;
Elf32_Off ri_data;
Elf32_Word ri_size;

} Res32_Item;

Member Description

ri_type This member holds the type of the resource. Its value is
operating system-specific. The resource type defines the
meaning of the resource data.

ri_ordinal This member holds the ordinal number of the resource. Each
resource has a unique ordinal within its resource type.

ri_name This member specifies the name of the resource ordinal. Its
value is an index into the resource string table. Names are
optional for resources. If the resource has no name, this
member holds the value zero.

ri_data This member holds the offset of the resource data. The offset
is relative to the start of the resource collection and shall be
word aligned. The format of the resource data is operating
system-specific.

ri_size This member holds the size of the resource data in bytes.

OS/2 Application Binary Interface for PowerPC (32-bit)

84 Release 1

Release 1 85

Object and Load Module File Format

9 Object and Load Module File Format
This chapter describes the formats of the object files and load module files (including
executables and dynamic link libraries) and debugging information for operating systems and
development tools conforming to this ABI.

An object file (ET_REL) is the output of a language translator that is suitable for linking with
other object files to create a load module. A load module is either an executable or a
dynamic link library (also known as a shared library) and is suitable for loading into a process
for execution. An executable (ET_EXEC) is a load module that is the basis for the creation of
a process. It can be dynamically linked with zero or more dynamic link libraries (ET_DYN) by
the system to complete the process image.

OS/2 Application Binary Interface for PowerPC (32-bit)

86 Release 1

9.1 ELF
The format of the object and load module files is based upon the ELF specification, version
1. The reader is referred to the Tool Interface Standards Portable Formats Specification and
Executable and Linking Format (ELF) for a general specification of the ELF format. (See also
chapters 4 and 5 of System V Application Binary Interface.) Book I of Executable and Linking
Format (ELF) along with the information in this section describe ELF as required to support
this ABI.

9.1.1 ELF Operating System-specific Information

This section documents the non-processor-specific ELF information required for operating
systems based upon this ABI. For PowerPC processor-specific information, see § 9.1.2,
“ELF PowerPC Processor-specific Information”, on page 104.

9.1.1.1 Sections

The following section types are defined.

Table 9-1: Section Types, sh_type

Name Value Meaning

SHT_SYMTAB
SHT_DYNSYM

2
11

These sections hold a symbol table. See “Symbol
Table” in Executable and Linking Format (ELF), Book
I for details. A file may have only one section of each
type. Typically, SHT_SYMTAB provides symbols for
static linking. As a complete symbol table, it may be
used for dynamic linking even though it may contain
many symbols unnecessary for dynamic linking. A
load module may also contain a SHT_DYNSYM
symbol table which holds a minimal set of symbols
necessary for dynamic linking.

SHT_STRTAB 3 This section holds a string table. See “String Table”
in Executable and Linking Format (ELF), Book I for
details. A file may have multiple string tables.

SHT_OS 0x60000001 This section holds the information to identify the
target operating system environment. See § 9.1.1.3,
“Operating System Information”, on page 91 for
details.

SHT_IMPORTS 0x60000002 This section holds information on references to
external symbols. See § 9.1.1.4, “Import Table”, on
page 92 for details.

SHT_EXPORTS 0x60000003 This section holds information on symbols that are
being exported. See § 9.1.1.5, “Export Table”, on
page 94 for details.

Release 1 87

Object and Load Module File Format

The following section attribute flags are defined.

These flags are used to control the combination by the static linker of sections having the
same name when it may be necessary to have a specific section from one object file placed
at the beginning or end of the combined section in the load module.

Two members in the section header, sh_link and sh_info, hold special information
depending on the section type.

SHT_RES 0x60000004 This section holds read-only resource data. See
§ 9.1.1.6, “Resource Collection”, on page 95 for
details.

Table 9-2: Section Attribute Flags, sh_flags

Name Value Meaning

SHF_BEGIN 0x01000000 This section shall be placed at the beginning of the
combination of like-named sections during the static link
step. Only one of the like-named sections in the
combination may have the SHF_BEGIN flag. A section
may not have both the SHF_BEGIN and SHF_END flag.

SHF_END 0x02000000 This section shall be placed at the end of the combination
of like-named sections during the static link step. Only
one of the like-named sections in the combination may
have the SHF_END flag. A section may not have both the
SHF_BEGIN and SHF_END flag.

Table 9-3: sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_SYMTAB
SHT_DYNSYM

The section header index of
the string table used by
entries in this section.

The symbol table index of
the last local symbol
(binding STB_LOCAL) + 1.

SHT_OS
SHT_RES

SHN_UNDEF 0

SHT_IMPORTS The section header index of
the string table used by
entries in this section.

0

SHT_EXPORTS The section header index of
the symbol table used by
entries in this section.

The section header index of
the string table used by
entries in this section.

Table 9-1: Section Types, sh_type (Continued)

Name Value Meaning

OS/2 Application Binary Interface for PowerPC (32-bit)

88 Release 1

All these sections must be word aligned. Thus the sh_addralign value for all these
sections is 4.

9.1.1.1.1 Special Sections

The following sections are used by the system and have the indicated types and attributes.
They are described below.

Table 9-4: Special Sections

Name Type Attributes

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.relaname SHT_RELA see below

.osinfo SHT_OS none

.imports SHT_IMPORTS SHF_ALLOC

.exports SHT_EXPORTS SHF_ALLOC

.res SHT_RES none

Table 9-5: Special Section Descriptions

Name Descriptions

.dynstr This section holds strings used in dynamic linking.

.dynsym This section holds symbols used in dynamic linking.

.relaname These sections hold relocation table entries. See § 9.1.2.3,
“Relocation”, on page 106 for more information. In object files, these
sections have no attribute flags. In load modules, these sections have
the SHF_ALLOC attribute flag if the section relocates information in a
PT_LOAD segment; otherwise the section has no attribute flags.
Conventionally, name is supplied by the section to which the
relocations apply. Thus a relocation section for .text normally would
have the name .rela.text.

.osinfo This section holds the information to identify the target operating
system environment. See § 9.1.1.3, “Operating System Information”,
on page 91 for details.

.imports The default name of the import table section. This section holds
information on references to external symbols. See § 9.1.1.4, “Import
Table”, on page 92 for details.

Release 1 89

Object and Load Module File Format

9.1.1.2 Symbol Table

The following symbol bindings are defined.

The following symbol types are defined.

9.1.1.2.1 Symbol Values

References to symbols defined outside of a load module are resolved using one of two
techniques. How a load module has been built determines which of these techniques must
be used for all references to symbols defined in other load modules.

1. If the load module’s Dynamic segment has a DT_IMPORT entry, then all references to
symbols defined in other load modules will be through the load module’s import table.
The symbol table entry referencing a symbol in another load module will have a type of
STT_IMPORT and the st_shndx member will contain the section header table index of
the import table section. The st_value member will hold the virtual address of the
import table entry for the symbol. The import table entry will contain information about
the load module where the symbol is defined. See § 9.1.1.4, “Import Table”, on page 92
for details on the import table.

.exports The default name of the export table section. This section holds
information on symbols that are being exported. See § 9.1.1.5, “Export
Table”, on page 94 for details.

.res The default name of the resource section. This section holds read-only
resource data. See § 9.1.1.6, “Resource Collection”, on page 95 for
details.

Table 9-6: Symbol Binding, ELF32_ST_BIND

Name Value Meaning

STB_ENTRY 12 This symbol defines an entry point for the load module. This
symbol binding is only found in object files and provides a
default entry point to the static linker. Only one symbol with
this binding may be encountered during static linking.
Otherwise treated the same as STB_GLOBAL.

Table 9-7: Symbol Type, ELF32_ST_TYPE

Name Value Meaning

STT_IMPORT 11 This symbol is a reference to a symbol in another load
module (i.e. this symbol is imported). The st_value
member holds the offset of the import table entry for this
symbol. Otherwise treated the same as STT_FUNC.

Table 9-5: Special Section Descriptions (Continued)

Name Descriptions

OS/2 Application Binary Interface for PowerPC (32-bit)

90 Release 1

2. If the load module’s Dynamic segment does not have a DT_IMPORT entry, then the load
module does not have a import table. The st_shndx member of the symbol table entry
referencing a symbol in another load module will contain SHN_UNDEF indicating that the
symbol is defined in another load module. To locate where the symbol is defined, the
load modules specified by the DT_NEEDED entries in the Dynamic segment must be
searched. They are searched in the order specified by the ordering of the DT_NEEDED
entries. Only those load modules specified by the DT_NEEDED entries are searched. If a
Procedure Linkage Table entry exists in the load module for the symbol, the symbol table
entry’s st_value member shall contain the virtual address of the PLT entry. Otherwise
the st_value member shall contain zero.

System V ABI Note: In System V Application Binary Interface, a breadth-first search of all
the DT_NEEDED entries, beginning with the executable, is performed to locate the
symbol. See “Shared Object Dependencies”, System V Application Binary Interface, for
details. This ABI differs from System V Application Binary Interface by only searching the
DT_NEEDED entries specified by the load module rather than the entire DT_NEEDED tree
of the process.

When searching a load module to resolve a symbol reference from another load module, the
symbol can be located in one of two ways. How a load module has been built determines
which of these techniques must be used when searching a load module for a symbol.

1. If the load module’s Dynamic segment has a DT_EXPORT entry, then all symbols
available to resolve references from other load modules will be located through the load
module’s export table. If the reference is from an import table entry with an ordinal
number, then a binary search can be performed on the export table entries to locate the
export table entry with a matching ordinal number. Otherwise if the reference is from an
import table entry with a name or a symbol table entry whose st_shndx member
contains SHN_UNDEF, the export table entries can be searched to locate the export table
entry with a matching name. See § 9.1.1.5, “Export Table”, on page 94 for details on the
export table.

2. If the load module’s Dynamic segment does not have a DT_EXPORT entry, then the load
module does not have an export table. All symbols available to resolve references from
other load modules will be located in the load module’s dynamic symbol table
(DT_SYMTAB). References from an import table entry with only an ordinal number and no
name cannot be resolved since there is no ordinal information in the dynamic symbol
table. If the reference is from an import table entry with a name or a symbol table entry
whose st_shndx member contains SHN_UNDEF, the dynamic symbol table can be
searched, via the symbol hash table (DT_HASH), to locate the symbol table entry with a
matching name.

Note: All OS/2 load modules (EOS_OS2) shall be built with import and export tables to
perform inter-load module symbol resolution.

Release 1 91

Object and Load Module File Format

9.1.1.3 Operating System Information

Multiple operating system environments will be using the ELF format for their objects and
load modules. In order to identify the target operating environment for these files, an
operating system information section is used to contain this information.

All object and load module files shall contain operating system information. The Elf32_Os
structure must be present and may be followed by additional operating system-specific
information. The presence and structure of the operating system-specific information is
defined by the target operating environment.

The following table defines possible values for os_type and their meanings.

Figure 9-1: Operating System Information, Elf32_Os

typedef struct
{

Elf32_Word os_type;
Elf32_Word os_size;

} Elf32_Os;

Member Description

os_type This member identifies the target operating system type of the
file. See Table 9-8, “Operating System Types, os_type”, below
for valid types.

os_size Size of the operating system-specific information immediately
following this structure. This field shall be set to 0 if no
operating system-specific information follows.

Table 9-8: Operating System Types, os_type

Name Value Meaning

EOS_NONE 0 Bad or unknown operating system

EOS_PN 1 IBM Microkernel personality neutral

EOS_SVR4 2 UNIX System V Release 4 operating system environment

EOS_AIX 3 IBM AIX operating system environment

EOS_OS2 4 IBM OS/2 operating system, 32 bit environment

OS/2 Application Binary Interface for PowerPC (32-bit)

92 Release 1

9.1.1.3.1 OS/2-specific Information

The Elf32_OS2Info structure shall follow the Elf32_Os structure in the PT_OS segment
for all OS/2 load modules (os_type equal to EOS_OS2). OS/2 object files shall only contain
the Elf32_Os structure in the SHT_OS section.

The following table defines possible values for os2_sessiontype and their meanings.

9.1.1.4 Import Table

An import table holds information on references to external entry points that must be
resolved when a load module is dynamically linked into a process image. These entry points
are symbols exported by other load modules. An exported entry point can be imported by
name or by ordinal. Import by ordinal is preferred since the ordinal can be quickly located in
the export table of the entry point exporter. Import by name involves searching for the name
of the entry point in the export table of the entry point exporter.

An import table is an array of import table entries. The entries in the table have no sorting
requirements. All import tables entries are referenced by symbol table entries. Import tables

Figure 9-2: OS/2 Information, Elf32_OS2Info

typedef struct
{

unsigned char os2_sessiontype;
unsigned char os2_sessionflags;
unsigned char os2_reserved[14];

} Elf32_OS2Info;

Member Description

os2_sessiontype This member holds the OS/2 session type for the load module.
See Table 9-9, “OS/2 Session Types, os2_sessiontype”, below
for valid types.

os2_sessionflags This member holds the OS/2 session flags for the load
module. There are no flags currently defined, so this member
shall be set to zero.

os2_reserved This member is reserved and shall be set to zero.

Table 9-9: OS/2 Session Types, os2_sessiontype

Name Value Meaning

OS2_SES_NONE 0 No session type. This value is the only valid value for
dynamic link libraries. This value is invalid for executables.

OS2_SES_FS 1 Full Screen session.

OS2_SES_PM 2 Presentation Manager session.

OS2_SES_VIO 3 Windowed (character-mode) session.

Release 1 93

Object and Load Module File Format

can be present in object files and provide information about external entry points to the static
linker. This information can also be explicitly provided to the static linker via linker directives.
The static linker will use this information to build the import table in the load module for use
by the dynamic linker.

Following is the format of an import table entry. The ordinal values 0 and -1 are reserved.

The imp_info member holds an index to the name of the load module and describes how
to interpret the index. The following code shows how to manipulate the value.

Figure 9-3: Import Table Entry, Elf32_Import

typedef struct
{

Elf32_Word imp_ordinal;
Elf32_Word imp_name;
Elf32_Word imp_info;
Elf32_Word imp_reserved;

} Elf32_Import;

Member Description

imp_ordinal This member identifies the ordinal number of the exported
entry point in the providing load module. Its value may be -1 if
the exported entry point is referenced by imp_name.
Reference by ordinal takes precedence over reference by
name.

imp_name This member holds a string table index of the exported entry
point name. Its value may be zero if the exported entry point is
referenced by imp_ordinal.

imp_info This member specifies the load module providing the exported
entry point. It is interpreted as shown below in Figure 9-4,
“imp_info Description”.

imp_reserved This member is reserved and set to zero.

Figure 9-4: imp_info Description

#define ELF32_IMP_TYPE(i) ((i) >> 24)
#define ELF32_IMP_DLL(i) ((i) & 0x00ffffff)
#define ELF32_IMP_INFO(t,d) (((t) << 24) | ((d) & 0x00ffffff))

ELF32_IMP_TYPE ELF32_IMP_DLL

Name Value Meaning

IMP_IGNORED 0 This import table entry shall be ignored.

IMP_STR_IDX 1 The value is a string table index to the name of the load
module. This type is used by import tables in object files.

OS/2 Application Binary Interface for PowerPC (32-bit)

94 Release 1

9.1.1.5 Export Table

An export table holds information on exported symbols. Symbols can be exported by name,
by ordinal or by both name and ordinal. Exported symbols have an export table entry
associated with them.

Export tables can be present in object files and provide information to the static linker about
symbols to be exported by the load module. This information can also be explicitly provided
to the static linker via linker directives. The static linker will use this information to build the
export table in the load module for use by the dynamic linker.

An export table is an array of export table entries. The export table entries are sorted in
ascending order by ordinal number to facilitate binary searches on the table. Following is the
format of an export table entry.

Note: An executable is not permitted to export symbols. Only dynamic link libraries may
export symbols.

IMP_DT_IDX 2 The value is a reference to a DT_NEEDED entry in the
Dynamic segment. A value of 1 here refers to the load
module referenced by the first DT_NEEDED element, a value
of 2 refers to the second and so forth. The order of the
DT_NEEDED elements is therefore significant. A value of 0 is
invalid. This type is used by import tables in load modules.

Figure 9-5: Export Table Entry, Elf32_Export

typedef struct
{

Elf32_Word exp_ordinal;
Elf32_Word exp_symbol;
Elf32_Word exp_name;
Elf32_Word exp_reserved;

} Elf32_Export;

Member Description

exp_ordinal This member holds the exported ordinal number. Its value may
be -1 if the symbol is exported only by name.

exp_symbol This member holds the symbol table index of the symbol being
exported.

exp_name This member holds the string table index of the exported
name. Its value may be zero if the symbol is exported only by
ordinal.

exp_reserved This member is reserved and set to zero.

Figure 9-4: imp_info Description (Continued)

Release 1 95

Object and Load Module File Format

9.1.1.6 Resource Collection

A resource section (SHT_RES) or resource segment (PT_RES) contains a resource collection
of the same class and data encoding as the ELF file containing the section or segment. See
§ 8, “Resource File Format”, on page 77 for general information on resources and § 8.2,
“Resource Collection”, on page 81 for the format of a resource collection.

9.1.1.7 Segments

When the static linker creates the program header table for a load module, it must ensure
that the virtual address ranges assigned to PT_LOAD segments are disjoint and are not
directly adjacent, i.e. there must be one or more bytes of unassigned virtual address space
between neighboring segments.

The following segment types are defined.

9.1.1.7.1 Segment Permissions

The following segment permission flags are defined.

Table 9-10: Segment Types, p_type

Name Value Meaning

PT_OS 0x60000001 This segment holds the information to identify the
target operating system environment. See § 9.1.1.3,
“Operating System Information”, on page 91 for details.
This segment is required in all load modules.

PT_RES 0x60000002 This segment holds read-only resource data. See
§ 9.1.1.6, “Resource Collection”, on page 95 for
details. For program table header entries of this type,
p_vaddr shall be zero.

Table 9-11: Segment Permission Flags, p_flags

Name Value Meaning

PF_X 0x1 This segment has execute permission.

PF_W 0x2 This segment has write permission.

PF_R 0x4 This segment has read permission.

PF_S 0x01000000 This segment is shared. The data in this segment is to
be shared among all processes using this load module.

OS/2 Application Binary Interface for PowerPC (32-bit)

96 Release 1

If a permission bit is zero, that type of access is denied. Typical flag combinations appear
below.

Note: A typical load module normally has two or three PT_LOAD segments. There is
generally always a text segment (PF_R|PF_X) and a data segment (PF_R|PF_W).
There may also be a shared data segment (PF_R|PF_W|PF_S). In general, all of the
code and data for a load module can be allocated into one of these three segments.

PF_K 0x02000000 This segment is mapped into the kernel address space.
This flag is used to indicate that the dynamic link library
is a kernel extension and executes at supervisor
privilege. Kernel extensions are defined to be memory
resident and need not specify the PF_M flag.

Note: This flag is valid only for dynamic link libraries.
If present, this flag must be specified for all
PT_LOAD segments in the load module.

PF_M 0x04000000 This segment is memory resident. This flag is used to
indicate that the load module is to be memory resident.

Note: If present, this flag must be specified for all
PT_LOAD segments in the load module.

PF_MASKPROC 0xf0000000 There are no processor-specific flags for PowerPC.

Table 9-12: Typical Segment Permission Flag Combinations

Flags Meaning

PF_R | PF_X Execute/Read (Text segment)

PF_R | PF_W Read/Write (Data segment)

PF_R | PF_W | PF_S Read/Write/Shared (Shared data segment)

Table 9-11: Segment Permission Flags, p_flags (Continued)

Name Value Meaning

Release 1 97

Object and Load Module File Format

9.1.1.7.2 Segment Contents

The following table illustrates segment contents and the recommended segment ordering for
load modules. Some segment types are optional.

Table 9-13: Segment Ordering

Segment Sections

PT_OS
Operating system information

.osinfo

PT_INTERP
Program interpreter

.interp

PT_PHDR
Program header table

PT_LOAD (read/execute)
Text segment

Note: Only one executable PT_LOAD
segment is allowed in a load
module.

.rodata

.tags

.imports

.exports

.dynamic (PT_DYNAMIC segment)

.dynsym

.dynstr

.hash

.rela.rodata

.rela.got

.rela.plt

.rela.data

.text

.got

.plt

PT_LOAD (read/write)
Data segment

.data

.bss

PT_DYNAMIC
Dynamic segment

This program header table entry describes the
.dynamic section in the Text segment above.

PT_*
Segment types not otherwise specified

PT_RES
Resource collection

.res

OS/2 Application Binary Interface for PowerPC (32-bit)

98 Release 1

• All SHT_NOBITS sections (e.g. .plt and .bss) shall be grouped at the end of their
respective segments.

• The .got and .plt sections shall be adjacent with the .got (SHT_PROGBITS) section
immediately preceding the .plt (SHT_NOBITS) section.

• The presence of segments and sections within segments is variable. The actual order
and membership of sections within a segment may alter the example above.

• While, in general, the system is tolerant of deviations from the recommended segment
ordering, some tools which operate on load modules may not be (e.g. elfstrip which
removes debugging information from load modules). It is therefore strongly urged that
the recommended segment ordering be used.

Note: ELF specifies the following ordering requirements for entries in the Program Header
table.

• If a PT_INTERP entry is present, it must precede all PT_LOAD entries.

• If a PT_PHDR entry is present, it must precede all PT_LOAD entries. Furthermore, the
PT_PHDR segment must be part of the memory image of the load module. This means
that the area of the load module file containing the Program Header table which is
mapped by the PT_PHDR segment must also be mapped by a PT_LOAD segment.

• All PT_LOAD entries must appear in ascending order sorted by p_vaddr.

Other data
This is data that can be stripped from
the load module without affecting the
validity of the load module.

.comment

.symtab

.strtab

.line

.debug

.rela.line

.rela.debug

.shstrtab

Table 9-13: Segment Ordering (Continued)

Segment Sections

Release 1 99

Object and Load Module File Format

9.1.1.8 Dynamic Segment

All load modules shall contain a Dynamic Segment referenced by a segment type of
PT_DYNAMIC. This segment contains an array of Elf32_Dyn structures.

The following dynamic array tags are defined. A “mandatory” tag must be present in the
Dynamic Segment. An “optional” tag may be present but is not required. An “ignored” tag
may be present but is not used. An “invalid” tag may not be present in a valid load module.

Figure 9-6: Dynamic Structure, Elf32_Dyn

typedef struct
{

Elf32_Sword d_tag;
union
{

Elf32_Word d_val;
Elf32_Addr d_ptr;

} d_un;
} Elf32_Dyn;

Member Description

d_tag This member identifies the array entry. See Table 9-14,
“Dynamic Array Tags, d_tag” below and Table 9-24, “Dynamic
Array Tags, d_tag,” on page 111 for possible values. The value
of d_tag controls in interpretation of the union d_un.

d_val This member holds an integer value whose meaning is
interpreted by the d_tag value.

d_ptr This member holds an address whose meaning is interpreted
by the d_tag value. When interpreting addresses in the
Dynamic Segment, the dynamic linker computes actual
addresses, based upon the original file value and the memory
base address. For consistency, files do not contain relocation
entries to “correct” addresses in the Dynamic Segment.

Table 9-14: Dynamic Array Tags, d_tag

Name Value d_un Executables Dynamic
Link Libraries

DT_NULL 0 ignored mandatory mandatory

DT_NEEDED 1 d_val optional optional

DT_HASH 4 d_ptr mandatory mandatory

DT_STRTAB 5 d_ptr mandatory mandatory

DT_SYMTAB 6 d_ptr mandatory mandatory

OS/2 Application Binary Interface for PowerPC (32-bit)

100 Release 1

The dynamic array tags are described below.

DT_STRSZ 10 d_val mandatory mandatory

DT_SYMENT 11 d_val mandatory mandatory

DT_SONAME 14 d_val ignored mandatory

DT_DEBUG 21 d_ptr optional optional

DT_EXPORT 0x60000001 d_ptr invalid optional

DT_EXPORTSZ 0x60000002 d_val invalid optional

DT_EXPENT 0x60000003 d_val invalid optional

DT_IMPORT 0x60000004 d_ptr optional optional

DT_IMPORTSZ 0x60000005 d_val optional optional

DT_IMPENT 0x60000006 d_val optional optional

DT_IT 0x60000007 d_val invalid mandatory

DT_ITPRTY 0x60000008 d_val invalid mandatory

DT_INITTERM 0x60000009 d_ptr invalid mandatory

DT_STACKSZ 0x6000000a d_val optional ignored

Table 9-15: Dynamic Array Tag Descriptions

Name Meaning

DT_NULL This entry marks the end of the Dynamic Segment.

DT_NEEDED This element holds the string table index, into the string table referenced
by DT_STRTAB, of a needed dynamic link library. The ordering of
DT_NEEDED elements is significant. See § 9.1.1.2.1, “Symbol Values”,
on page 89 for additional information.

DT_HASH This entry holds the address of the symbol hash table described in
§ 9.1.1.10, “Hash Table”, on page 103. This hash table refers to the
symbol table referenced by the DT_SYMTAB entry.

DT_STRTAB This entry holds the address of the string table used in dynamic linking.
Symbol names, library names and other strings reside in this table.

DT_SYMTAB This entry holds the address of the symbol table used in dynamic linking.

Table 9-14: Dynamic Array Tags, d_tag (Continued)

Name Value d_un Executables Dynamic
Link Libraries

Release 1 101

Object and Load Module File Format

DT_STRSZ This entry holds the size, in bytes, of the string table referenced by
DT_STRTAB.

DT_SYMENT This entry holds the size, in bytes, of a symbol table entry in the symbol
table referenced by DT_SYMTAB.

DT_SONAME This element holds the string table index, into the string table referenced
by DT_STRTAB, of the name of this dynamic link library.

DT_DEBUG This entry is used for debugging. Its contents are not specified by this
ABI.

DT_EXPORT This entry holds the address of the export table, described in § 9.1.1.5,
“Export Table”, on page 94.

DT_EXPORTSZ This entry holds the total size, in bytes, of the export table. This entry
must accompany a DT_EXPORT entry.

DT_EXPENT This entry holds the size, in bytes, of an export table entry. This entry
must accompany a DT_EXPORT entry.

DT_IMPORT This entry holds the address of the import table, described in § 9.1.1.4,
“Import Table”, on page 92.

DT_IMPORTSZ This entry holds the total size, in bytes, of the import table. This entry
must accompany a DT_IMPORT entry.

DT_IMPENT This entry holds the size, in bytes, of an import table entry. This entry
must accompany a DT_IMPORT entry.

DT_IT This entry holds the initialization and termination types for a dynamic link
library. This entry is mandatory if DT_INITTERM is specified. See
§ 9.1.1.9, “Initialization and Termination Functions”, on page 102 for
details.

DT_ITPRTY This entry holds a priority value indicating the relative priority of the
initialization and termination of this dynamic li nk library to all other
dynamic link libraries in a process. This entry is mandatory if
DT_INITTERM is specified. See § 9.1.1.9, “Initialization and Termination
Functions”, on page 102 for details.

DT_INITTERM This entry holds the address of the initialization and termination function.
This function performs both initialization and termination duties. This
entry will hold zero if there is no initialization and termination function.
See § 9.1.1.9, “Initialization and Termination Functions”, on page 102 for
details.

Table 9-15: Dynamic Array Tag Descriptions (Continued)

Name Meaning

OS/2 Application Binary Interface for PowerPC (32-bit)

102 Release 1

9.1.1.9 Initialization and Termination Functions

The DT_IT entry identifies the type of initialization and termination behavior for an OS/2
dynamic link library. The following code show how to manipulate its value and its meaning.

The remaining values are reserved. If initialization or termination is indicated then the
DT_INITTERM entry must be present and non-zero. The DT_ITPRTY entry holds a priority
value that, when compared with the DT_ITPRTY values of the other dynamic link libraries in
a process image, gives a relative ordering of the initialization and termination of the dynamic
link libraries in the process image. A value of zero is the highest priority with priority
decreasing as the value increases. The order in which dynamic link libraries with the same
priority value are initialized and terminated is unspecified.

DT_STACKSZ This entry holds the requested size of the stack for the executable. (This
is the stack for thread 1 in the process.) The system will create the stack
with a size greater than or equal to the specified size. If this entry is not
present, then the system will create the stack with a default size.

Figure 9-7: DT_IT Description

#define ELF32_IT_INIT(it) ((it) & 0x0f)
#define ELF32_IT_TERM(it) (((it) >> 4) & 0x0f)
#define ELF32_IT_INFO(i,t) (((i) & 0x0f)|(((t) & 0x0f) << 4))

ELF32_IT_INIT and ELF32_IT_TERM

Name Value Meaning

IT_NONE 0 No initialization or termination. The dynamic link library is not
called for initialization or termination.

IT_GLOBAL 1 Global initialization or termination. If a dynamic link library is
not in use by any process and a new process causes the
dynamic link library to be loaded, the initialization routine is
called. If a process causes a dynamic link library to be
unloaded and no other process is using the dynamic link
library, the termination routine is called.

IT_INSTANCE 2 Process initialization or termination. If a process causes a
dynamic link library to be loaded, the initialization routine is
called. If a process causes a dynamic link library to be
unloaded, the termination routine is called.

IT_THREAD 3 Note: This value is currently not supported but is reserved
for future use.

Table 9-15: Dynamic Array Tag Descriptions (Continued)

Name Meaning

Release 1 103

Object and Load Module File Format

The initialization and termination function, whose address is specified by DT_INITTERM, is
called with two parameters as described below.

See § 11.2, “Process Initialization”, on page 131 and § 11.3, “Process Termination”, on page
133 for more information on dynamic link library initialization and termination.

9.1.1.10 Hash Table

A hash table of Elf32_Word entries supports symbol table access. Labels appear below to
help explain the hash table organization, but they are not part of the specification.

The bucket array contains nbucket entries and the chain array contains nchain entries.
Both indexes start at zero. Both bucket and chain hold symbol table indexes. Chain table
entries parallel the symbol table. The number of symbol table entries should equal nchain;
so symbol table indexes also select chain table entries. A hashing function accepts a symbol

Figure 9-8: DT_INITTERM Function Prototype

typedef unsigned long INITTERM (unsigned long modhandle,
unsigned long flag);

Parameter Description

modhandle This parameter holds a system assigned handle for the load
module.

flag This parameter holds one of the following values.

0 If the entry point is being called for initialization.

1 If the entry point is being called for termination.

Return Value A non-zero return value indicates successful initialization/
termination. A zero return value indicates that initialization/
termination failed. If a failure is indicated, the system will abort
the load of the dynamic link library. If this failure occurs during
process start-up, the system will abort the process.

Figure 9-9: Symbol Hash Table

nbucket

nchain

bucket[0]

...

bucket[nbucket-1]

chain[0]

...

chain[nchain-1]

OS/2 Application Binary Interface for PowerPC (32-bit)

104 Release 1

name and returns a value that may be used to compute a bucket index. Consequently, if
the hashing function returns the value x for some name, bucket[x%nbucket] gives and
index, y, into both the symbol table and the chain table. If the symbol table entry is not the
one desired, chain[y] gives the next symbol entry with the same hash value. One can
follow the chain links until either the selected symbol entry holds the desired name or the
chain entry contains the value STN_UNDEF.

9.1.2 ELF PowerPC Processor-specific Information

This section documents the ELF information specific to the PowerPC processor.

9.1.2.1 ELF Header

9.1.2.1.1 Machine Identification

The e_ident member shall contain the following identification values.

The e_machine member shall contain the following machine type.

Figure 9-10: Hashing Function

unsigned long elf_hash (const unsigned char * name)
{

unsigned long h = 0, g;

while (*name)
{

h = (h << 4) + *name++;
if (g = h & 0xf0000000)

h ^= g >> 24;
h &= ~g;

}
}

Table 9-16: ELF Identification, e_ident

Position Value Meaning

e_ident[EI_CLASS] ELFCLASS32 32-bit implementation

e_ident[EI_DATA] ELFDATA2LSB Little Endian implementation

Table 9-17: Processor Identification, e_machine

Name Value Meaning

EM_PPC 20 PowerPC Architecture

Release 1 105

Object and Load Module File Format

The e_flags member may contain a combination of the following processor-specific flags.

9.1.2.2 Sections

9.1.2.2.1 Special Sections

The following sections are used by the system and have the indicated types and attributes.
They are described below.

System V ABI Note: The System V Application Binary Interface, PowerPC Processor
Supplement defines both the .got and .plt sections to have the SHF_WRITE attribute.
It additionally does not define the .got section to have the SHF_EXECINSTR attribute.

Note: The section names .sdata and .sbss are assigned for use by UNIX System V.
Section names beginning with .PPC.EMB. and the section name .rosdata are
assigned for use by embedded systems.

Table 9-18: Processor Flags, e_flags

Name Value Meaning

EF_PPC_EMB 0x80000000 Reserved for use in embedded systems.

Table 9-19: Special Sections

Name Type Attributes

.got SHT_PROGBITS SHF_ALLOC | SHF_EXECINSTR

.plt SHT_NOBITS SHF_ALLOC | SHF_EXECINSTR

.tags SHT_PROGBITS SHF_ALLOC

Table 9-20: Special Section Descriptions

Name Descriptions

.got This section holds the Global Offset Table or GOT. See § 11.5, “Global
Offset Table (GOT)”, on page 135 for details.

.plt This section holds the Procedure Linkage Table or PLT. See § 11.6,
“Procedure Linkage Table (PLT)”, on page 137 for details.

Note: The .plt section on PowerPC is of type SHT_NOBITS, not
SHT_PROGBITS as on most other processors.

.tags This optional section holds the long form function tag information. See
§ 7.2, “Function Tags”, on page 58 for details on function tags.

OS/2 Application Binary Interface for PowerPC (32-bit)

106 Release 1

System V ABI Note: The System V Application Binary Interface, PowerPC Processor
Supplement defines a Small Data Area with initialized data in section .sdata and
uninitialized data in section .sbss.

9.1.2.3 Relocation

This ABI specifies the use of only relocation entries with explicit addends, i.e. Elf32_Rela.
Relocations are applied to halfwords or words and the r_offset field holds the offset or
virtual address of the storage unit to be modified. The r_addend member holds the
relocation addend. All values use the data encoding specified in the ELF header.

9.1.2.3.1 Relocation Types

The relocation types specify how to compute the relocation value and which bits to modify in
the target storage unit.

The following relocation fields are defined. Little Endian byte numbers are in the upper
corners. Bit numbers appear in the lower corners.

Table 9-21: Relocation Fields

Field Description

word32 Specifies a 4 byte field with word
alignment.

low24
Specifies a 24-bit field contained within an
aligned word. The 24-bit relative
displacement in bits 6-29 are modified
and the remaining bits are ignored and
unmodified. (See the LI field of the I
Instruction Format in PowerPC
Architecture.)

low14

Specifies a 14-bit field contained within an
aligned word. The 14-bit relative
displacement in bits 16-29 are modified
and bit 10 (branch prediction) may be
modified depending on the relocation
type. The remaining bits are ignored and
unmodified. (See the BO4 and BD fields of
the B Instruction Format in PowerPC
Architecture.)

word32
3 0

0 31

0

31
low24

6 29

3

0 5

0

31
low14

16 29

3

0 15

Release 1 107

Object and Load Module File Format

The following variables are defined for use in the relocation calculations.

Section offsets are used in object files and virtual addresses are used in load modules.

The following general rules apply to the interpretation of the relocation types in Table 9-23,
“Relocation Types”.

half16 Specifies a 2 byte field with halfword
alignment. (See the D, SI or UI fields of
the D Instruction Format in PowerPC
Architecture.)

Table 9-22: Relocation Variables

Variable Definition

A Addend to be used in the relocation calculation. The r_addend member of
the relocation entry holds this value.

B Adjustment to the base address of a segment. When the load module is
created by the static linker, each segment is created with a base address.
This is specified by the p_vaddr member of the program header table entry
for the segment. The difference between the actual load address for the
segment and the address specified in p_vaddr is the value of B. Each
segment will have its own, possibly unique, value of B. When using the
variable B in a relocation calculation (for R_PPC_RELATIVE), the value being
relocated must be examined to determine which segment it references. The
value of B used in the calculation will be the value of B corresponding to the
referenced segment.

G Offset in the Global Offset Table (from the symbol
_GLOBAL_OFFSET_TABLE_) of the GOT entry which will contain the address
of the relocation entry’s symbol. See § 11.5, “Global Offset Table (GOT)”, on
page 135 for more information.

L Section offset or virtual address of the Procedure Linkage Table entry of the
relocation entry’s symbol. See § 11.6, “Procedure Linkage Table (PLT)”, on
page 137 for more information.

P Section offset or virtual address of the storage unit being relocated. The
r_offset member of the relocation entry holds this value.

S Value of the relocation entry’s symbol. The st_value member of the symbol
table entry referenced by the relocation entry holds this value.

Table 9-21: Relocation Fields (Continued)

Field Description

half16
1 0

0 15

OS/2 Application Binary Interface for PowerPC (32-bit)

108 Release 1

• The value of the calculation replaces the value in the field being relocated. In no case
does the value in the field participate in the calculation.

• “+” and “-” denote 32-bit modulus addition and subtraction, respectively, of the left and
right operands. “>>” denotes arithmetic right shifting (shift with sign copy) of the left
operand by the number of bits specified by the right operand.

• @l(value) returns the least significant 16-bits of the 32-bit value. @h(value) returns the
most significant 16-bits of the 32-bit value. @ha(value) returns the most significant 16-
bits of the 32-bit value adjusted for @l(value) being treated as a signed number.

• @l(x) = (x & 0xFFFF)

• @h(x) = ((x >> 16) & 0xFFFF)

• @ha(x) = (((x >> 16) + ((x & 0x8000) ? 1 : 0)) & 0xFFFF)

• References to the variable G in the calculation implicitly directs the static linker to create
a GOT entry for the referenced symbol.

• References to the variable L in the calculation implicitly directs the static linker to create
a PLT entry for the referenced symbol.

• The static linker shall report all relocation failures as errors.

Table 9-23: Relocation Types

Name Value Field Calculation Notes

R_PPC_NONE 0 none none 5

R_PPC_ADDR32 1 word32 S + A 5

R_PPC_ADDR24 2 low24 (S + A) >> 2 1,2,4

R_PPC_ADDR16 3 half16 S + A 1,3

R_PPC_ADDR16_LO 4 half16 @l(S + A)

R_PPC_ADDR16_HI 5 half16 @h(S + A)

R_PPC_ADDR16_HA 6 half16 @ha(S + A)

R_PPC_ADDR14 7 low14 (S + A) >> 2 1,3,4

R_PPC_ADDR14_BRTAKEN 8 low14 (S + A) >> 2 1,3,4,7

R_PPC_ADDR14_BRNTAKEN 9 low14 (S + A) >> 2 1,3,4,7

R_PPC_REL24 10 low24 (S + A - P) >> 2 1,2,4

R_PPC_REL14 11 low14 (S + A - P) >> 2 1,3,4

R_PPC_REL14_BRTAKEN 12 low14 (S + A - P) >> 2 1,3,4,7

R_PPC_REL14_BRNTAKEN 13 low14 (S + A - P) >> 2 1,3,4,7

R_PPC_GOT16 14 half16 G + A 1,3,6

Release 1 109

Object and Load Module File Format

The entries in the Notes column are defined below.

1. The relocation is subject to failure if the computed value does not fit within the bits
specified by the Field column.

2. The most significant 7 bits of the computed value, before any shifting, must all be the
same.

R_PPC_GOT16_LO 15 half16 @l(G + A) 6

R_PPC_GOT16_HI 16 half16 @h(G + A) 6

R_PPC_GOT16_HA 17 half16 @ha(G + A) 6

R_PPC_PLTREL24 18 low24 (L + A - P) >> 2 1,2,4,8

R_PPC_COPY 19 none see note 9 5,9

R_PPC_GLOB_DAT 20 word32 S + A 5,10

R_PPC_JMP_SLOT 21 none see note 11 5,11

R_PPC_RELATIVE 22 word32 B + A 5,12

R_PPC_LOCAL24PC 23 low24 see note 13 1,2,4,13

R_PPC_UADDR32 24 word32 S + A 14

R_PPC_UADDR16 25 half16 S + A 1,3,14

R_PPC_REL32 26 word32 S + A - P

R_PPC_PLT32 27 word32 L + A 8

R_PPC_PLTREL32 28 word32 L + A - P 8

R_PPC_PLT16_LO 29 half16 @l(L + A) 8

R_PPC_PLT16_HI 30 half16 @h(L + A) 8

R_PPC_PLT16_HA 31 half16 @ha(L + A) 8

R_PPC_SDAREL16 32 half16 see note 9 1,3,9

R_PPC_SECTOFF 33 half16 see note 9 1,3,9

R_PPC_SECTOFF_LO 34 half16 see note 9 9

R_PPC_SECTOFF_HI 35 half16 see note 9 9

R_PPC_SECTOFF_HA 36 half16 see note 9 9

R_PPC_REL30 37 see note 9 9

Table 9-23: Relocation Types (Continued)

Name Value Field Calculation Notes

OS/2 Application Binary Interface for PowerPC (32-bit)

110 Release 1

3. The most significant 17 bits of the computed value, before any shifting, must all be
the same.

4. The least significant 2 bits of the computed value, before any shifting, must be zero.

5. This relocation type may be seen by the dynamic linker

6. This relocation type directs the static linker to build a Global Offset Table and to add
a GOT entry to the table which will contain the address of the relocation entry’s
referenced symbol. There will be only one GOT entry for each symbol.

7. This relocation type indicates that the branch prediction bit (bit 10) of the conditional
branch instruction being relocated should be modified. The _BRTAKEN suffix predicts
the branch will be taken. The _BRNTAKEN suffix predicts the branch will not be taken.

8. This relocation type directs the static linker to build a Procedure Linkage Table and
to add a PLT entry to the table for the relocation entry’s referenced symbol. There
will be only one PLT entry for each symbol. Since the PLT entry is assumed to be ±
32MB from the call site, the R_PPC_PLTREL24 relocation type is the only type
needed to relocate branches to PLT entries.

9. This relocation type is not used in this ABI but is assigned for use by UNIX System V.

10. This relocation type is used to set a Global Offset Table entry to the address of the
specified symbol. It is otherwise identical to R_PPC_ADDR32 but allows a
correspondence between symbols and GOT entries to be determined.

11. This relocation type directs the dynamic linker to relocate Procedure Linkage Table
entries. The DT_JMPREL entry in the Dynamic segment points to an array of these
relocation entries. There is a one-to-one correspondence between the relocation
entries and the PLT entries. See § 11.6, “Procedure Linkage Table (PLT)”, on page
137 for additional details.

12. This relocation type directs the dynamic linker to perform a relative relocation. The
r_addend member holds a pointer to which the relative relocation is to be applied.
The pointer was initialized by the static linker based upon the p_vaddr member of
the program header table entry for the segment into which the pointer points. The
pointer must be relocated based upon the load address of that segment. The pointer
is adjusted by the difference between the actual load address and the p_vaddr
address of the segment into which the pointer points (the relocation variable B). The
storage unit addressed by r_offset is then assigned the adjusted pointer. This
relocation type shall specify no symbol, i.e. the symbol table index shall be zero.

The static linker shall also store the pointer to which the relative relocation is to be
applied in the storage unit addressed by r_offset as well as in the r_addend
member. This will allow the dynamic linker to avoid processing R_PPC_RELATIVE
relocations if all the segments are loaded at the virtual addresses specified by their
respective p_vaddr members since the storage units will already contain the correct
value (because the relocation variable B will be zero for all segments in the load
module).

13. This relocation type uses the value of the symbol from the individual object file rather
than the adjusted symbol value after combining all objects. It is otherwise identical to
R_PPC_REL24. The referenced symbol for this relocation type is normally

Release 1 111

Object and Load Module File Format

_GLOBAL_OFFSET_TABLE_, which additionally directs the static linker to build a
Global Offset Table.

14. This relocation type allows the relocated storage unit to be unaligned.

Relocation values in the range 101-200 and names beginning with R_PPC_EMB_ are
assigned for embedded system use. All relocation values not listed in Table 9-23, “Relocation
Types”, or ot herwise assigned are reserved.

System V ABI Note: The System V Application Binary Interface, PowerPC Processor
Supplement defines the relocation types R_PPC_COPY, R_PPC_SDAREL16 and
R_PPC_SECTOFF*. These relocation types are not supported by this ABI.

9.1.2.4 Dynamic Segment

The following processor-specific dynamic array tags are defined. A “mandatory” tag must be
present in the Dynamic Segment. An “optional” tag may be present but is not required.

Table 9-24: Dynamic Array Tags, d_tag

Name Value d_un Executables Dynamic
Link Libraries

DT_PLTRELSZ 2 d_val optional optional

DT_PPC_PLT
DT_PLTGOT

3 d_ptr optional optional

DT_RELA 7 d_ptr mandatory mandatory

DT_RELASZ 8 d_val mandatory mandatory

DT_RELAENT 9 d_val mandatory mandatory

DT_PLTREL 20 d_val optional optional

DT_JMPREL 23 d_ptr optional optional

DT_PPC_GOT 0x70000001 d_ptr optional optional

DT_PPC_GOTSZ 0x70000002 d_val optional optional

DT_PPC_PLTSZ 0x70000003 d_val optional optional

OS/2 Application Binary Interface for PowerPC (32-bit)

112 Release 1

The dynamic array tags are described below.

Table 9-25: Dynamic Array Tag Descriptions

Name Meaning

DT_PLTRELSZ This entry holds the total size, in bytes, of the relocation entries
associated with the Procedure Linkage Table. This entry must
accompany a DT_JMPREL entry.

DT_PPC_PLT
DT_PLTGOT

This entry holds the address of the Procedure Linkage Table, i.e. the
address of the .plt section. For additional information on the
Procedure Linkage Table, see § 11.6, “Procedure Linkage Table (PLT)”,
on page 137.

DT_RELA This entry holds the address of the relocation table. This relocation
table holds all relocation entries except those for the Procedure
Linkage Table. They are contained in the relocation table addressed by
DT_JMPREL.
The relocation entries in this table shall be sorted by r_offset values
in ascending order. This will allow the dynamic linker to easily locate all
relocations for given memory page.

Note: Since only relocation entries with explicit addends are specified
in this ABI, all relocation entries are of the form Elf32_Rela.

DT_RELASZ This entry holds the total size, in bytes, of the relocation table
referenced by DT_RELA. This entry must accompany a DT_RELA entry.

DT_RELAENT This entry holds the size, in bytes, of a relocation table entry in the
relocation table referenced by DT_RELA. This entry must accompany a
DT_RELA entry.

DT_PLTREL This entry specifies the type of relocation entries in the DT_JMPREL
relocation table. This entry shall hold the value DT_RELA. This entry
must accompany a DT_JMPREL entry.

DT_JMPREL This entry holds the address of the relocation table for the Procedure
Linkage Table. This relocation table only holds relocation entries for the
Procedure Linkage Table. All other relocation entries are contained in
the relocation table addressed by DT_RELA. The relocation entries in
this relocation table have a one-to-one correspondence with the
Procedure Linkage Table entries. See § 11.6, “Procedure Linkage
Table (PLT)”, on page 137 for further details.

System V ABI Note: The System V Application Binary Interface,
PowerPC Processor Supplement specifies that the table of
DT_JMPREL relocation entries is wholly contained within the
relocation table referenced by DT_RELA. This ABI specifies that
the DT_JMPREL table is a separate table from the DT_RELA table.

Release 1 113

Object and Load Module File Format

DT_PPC_GOT This entry holds the address of the Global Offset Table, i.e. the address
of the .got section. This is not the same at the address of the symbol
_GLOBAL_OFFSET_TABLE_ since negative offsets from
_GLOBAL_OFFSET_TABLE_ are allowed. For additional information on
the Global Offset Table, see § 11.5, “Global Offset Table (GOT)”, on
page 135.

DT_PPC_GOTSZ This entry holds the total size, in bytes, of the Global Offset Table, i.e.
the size of the .got section. This entry must accompany a
DT_PPC_GOT entry.

DT_PPC_PLTSZ This entry holds the total size, in bytes, of the Procedure Linkage Table,
i.e. the size of the .plt section. This entry must accompany a
DT_PPC_PLT entry.

Table 9-25: Dynamic Array Tag Descriptions (Continued)

Name Meaning

OS/2 Application Binary Interface for PowerPC (32-bit)

114 Release 1

9.2 DWARF
This section defines the information necessary to support the Debug With Arbitrary Record
Format (DWARF) debugging information format on the PowerPC architecture. This ABI does
not define a debugging information format, but all implementations of DWARF for this ABI
shall use the definitions in this section. The reader is referred to Tool Interface Standards
Portable Formats Specification for general information on the DWARF debugging information
format.

9.2.1 DWARF PowerPC Processor-specific Information

This section documents the DWARF information specific to the PowerPC processor.

9.2.1.1 Register Numbers

The following register number mappings are specified for the PowerPC User Instruction Set
Architecture (UISA) registers.

Note: In general, all registers which have a Special Purpose Register (SPR) number will
have a DWARF register number equal to 100 plus the SPR number.

The following register number mappings are specified for the PowerPC Virtual Environment
Architecture (VEA) registers.

Table 9-26: PowerPC UISA Register Mapping

Name Abbreviation Number

General Purpose Registers r0 - r31 0 - 31

Floating Point Registers f0 - f31 32 - 63

Condition Register CR 64

Floating Point Status and Control Register FPSCR 65

Fixed Point Exception Register XER (or SPR1) 101

Link Register LR (or SPR8) 108

Count Register CTR (or SPR9) 109

Other Special Purpose Registers SPRn 100 + n

Table 9-27: PowerPC VEA Register Mapping

Name Abbreviation Number

Time Base Lower Register (read only) TBR 268 368

Time Base Upper Register (read only) TBR 269 369

Release 1 115

Object and Load Module File Format

The following register number mappings are specified for the PowerPC Operating
Environment Architecture (OEA) registers.

Consult the hardware reference manuals, PowerPC Architecture and PowerPC 603 RISC
Microprocessor User’s Manual, for specific Special Purpose Register numbers and uses.
The presence of Special Purpose Registers will vary among PowerPC implementations.

Table 9-28: PowerPC OEA Register Mapping

Name Abbreviation Number

Machine State Register MSR 66

Segment Registers SR0 - SR15 70 - 85

Other Special Purpose Registers SPRn 100 + n

OS/2 Application Binary Interface for PowerPC (32-bit)

116 Release 1

Release 1 117

Object Library File Format

10 Object Library File Format
This chapter describes the format of object library files. Object library files are searched by
the static linker to resolve undefined symbols. The ABI defines two object library file formats.
The Library File format is the preferred file format.

OS/2 Application Binary Interface for PowerPC (32-bit)

118 Release 1

10.1 Archive File Format
This file format is the same as the Archive File format (AR) used in UNIX System V. See
System V Application Binary Interface, Chapter 7, for details on the Archive File format.

Release 1 119

Object Library File Format

10.2 Library File Format
The Library File format (LIB) is a modification of the AR file format. A LIB file contains only
ELF object files.

10.2.1 LIB File Layout

A LIB file has the following layout in the indicated order.

10.2.2 LIB Header

A LIB file begins with a LIB file header. All information in the header is viewable ASCII. All
fields have their values stored in ASCII representation and are left-justified and padded on
the right with spaces.

Figure 10-1: LIB File Layout

LIB file header.

An optional special member: symbol table (created only if at least one member
defines non-local symbols.)

An optional special member: long file name string table (created only if at least one
member’s file name exceeds 15 bytes in length.)

An optional special member: full file name string table.

ELF Object File members.

Figure 10-2: LIB File Header, Lib32_File

#define LIBMAG “!<mlib>\n”

typedef struct
{

unsigned char lib_magic[8];
unsigned char lib_class[4];
unsigned char lib_data[4];

} Lib32_File;

Field Description

lib_magic The field identifies the file as a LIB file and contains the
sequence of characters in LIBMAG.

Note: The sequence of characters is not null-terminated.

lib_class This field holds the ASCII decimal representation of the class
of ELF object files in the LIB file. All members of the LIB file
shall be of the same class. See the e_ident[EI_CLASS]
member of the ELF Header for possible values.

OS/2 Application Binary Interface for PowerPC (32-bit)

120 Release 1

Note: For this ABI, the value of lib_class shall be ELFCLASS32 and the value of
lib_data shall be ELFDATA2LSB.

10.2.3 LIB Members

A LIB file member consists of a member header followed by the unchanged contents of the
member’s file. All member headers begin on a halfword boundary. A newline character (‘\n’)
is used if necessary to pad between members. There is no provision for empty areas in the
LIB file.

All information in a member header is viewable ASCII. All fields have their values stored in
ASCII representation and are left-justified and padded on the right with spaces.

lib_data This field holds the ASCII decimal representation of the data
encoding of ELF object files in the LIB file. All members of the
LIB file shall have the same data encoding. See the
e_ident[EI_DATA] member of the ELF Header for possible
values.

Figure 10-3: LIB Member Header, Lib32_Hdr

#define LIBFMAG “`\n”

typedef struct
{

unsigned char lib_name[16];
unsigned char lib_date[12];
unsigned char lib_uid[6];
unsigned char lib_gid[6];
unsigned char lib_mode[8];
unsigned char lib_size[10];
unsigned char lib_fmag[2];

} Lib32_Hdr;

Field Description

lib_name This field contains the member’s file name. If the member’s file
name is 15 bytes or less in length, it is stored in this field,
terminated with a slash (‘/’) and padded with spaces on the
right (e.g. “filename.o/ “). If the member’s file name
exceeds 15 bytes in length, the field contains a slash followed
by the ASCII decimal representation of the name’s offset in the
long file name string table, padded with spaces on the right
(e.g. “/125 ”).

lib_date This field contains the ASCII decimal representation of the
number of seconds since 00:00:00 Universal Time, January 1,
1970. For file members, this is the value of the last
modification date of the file at the time of its insertion into the
library. For special members, the value is zero.

Figure 10-2: LIB File Header, Lib32_File (Continued)

Release 1 121

Object Library File Format

The member’s unchanged contents immediately follow the member header.

10.2.4 LIB Special Members

There are three optional special members in a LIB file. If present, they precede all “normal”
members in the LIB file and are encountered in the following order.

10.2.4.1 Symbol Table Member

If at least one member of the LIB defines non-local symbols (i.e. weak and/or global), the LIB
file’s first member will be a symbol table member. This member has a special name
consisting of a slash followed by spaces (“/ “).

lib_uid This field contains the ASCII decimal representation of the
user identifier of the member file at the time of its insertion into
the library. For special members, the value is zero.

Note: The value is zero if the file system does not support
user identifiers.

lib_gid This field contains the ASCII decimal representation of the
group identifier of the member file at the time of its insertion
into the library. For special members, the value is zero.

Note: The value is zero if the file system does not support
group identifiers.

lib_mode This field contains the ASCII octal representation of the
member’s file access mode at the time of its insertion into the
library. For special members, the value is zero.

Note: The value is zero if the file system does not support
access modes.

lib_size This field contains the ASCII decimal representation of the
member’s size in bytes, exclusive of padding. The member’s
contents begin immediately following the member header. For
special members, the value is the size of the special members
data.

lib_fmag The field contains the sequence of characters in LIBFMAG.

Note: The sequences of characters is not null-terminated.

Figure 10-3: LIB Member Header, Lib32_Hdr (Continued)

OS/2 Application Binary Interface for PowerPC (32-bit)

122 Release 1

The data for this member is partitioned as described below. All words in the symbol table are
4 bytes in length and use the data encoding indicated in the lib_data member of the file
header.

The following example symbol table contains 4 symbols and is 50 bytes in length. The LIB
file member at offset 0x114 defines name, symbol information STB_WEAK, STT_FUNC, and
object, symbol information STB_GLOBAL, STT_OBJECT. The LIB file member at offset
0x426 defines function, symbol information STB_GLOBAL, STT_FUNC, and name, symbol
information STB_GLOBAL, STT_FUNC.

Table 10-1: Symbol Table Layout

Size Description

Symbol
count

One word. This word contains the number (N) of symbols in the
symbol table.

File offset
array

N words Each word in the array is an offset, relative to the
beginning of the file, to a member of the LIB file. There is a
one-to-one correspondence between symbol names in the
string table below and entries in this array. The entries in
this array provide the offset of the member defining the
corresponding symbol.

Symbol
information
array

N bytes Each byte in the array contains the symbol’s type and
binding information. It is the equivalent to the st_info
information found in ELF symbol tables. There is a one-to-
one correspondence between symbol names in the string
table below and entries in this array. The entries in this
array provide the symbol’s type and binding information for
the corresponding symbol.

String table lib_size
- 5*(N) - 4

This table consists of a sequence of N null-terminated
symbol names. Entries in the string table parallel the order
of members in the LIB file. Thus if two or more members
define symbols with the same name (which is allowed), the
string table entries for the symbols will appear in the same
order as their corresponding members in the LIB file.

Figure 10-4: Symbol Table Example

Offset +0 +1 +2 +3

0 4 4 entries in the symbol table

4 0x114 offset of member defining name

8 0x114 offset of member defining object

12 0x426 offset of member defining function

16 0x426 offset of member defining name

Release 1 123

Object Library File Format

10.2.4.2 Long File Name String Table Member

If at least one member’s file name exceeds 15 bytes in length, a long file name string table
member will be present. It follows the symbol table member. This member has a special
name consisting of two slashes followed by spaces (“// “).

The data for this member is a sequence of file names, each terminated by a two character
sequence of slash and newline (“/\n”). The first byte of the data is offset zero in the long file
name string table. The following example shows lib_name values for various file names.

10.2.4.3 Full File Name String Table Member

An optional special member may exist which contains the full file names for each member in
the LIB file. It follows the symbol table member and the long file name string table member.

20 0x22 0x11 0x12 0x12 symbol information

24 n a m e start of the string table

28 \0 o b j

32 e c t \0

36 f u n c

40 t i o n

44 \0 n a m

48 e \0

Figure 10-5: Long File Name String Table Example

Member Name lib_name Comment

regularname.o regularname.o/ Not in string table

fullbigfilename.o /0 Offset 0 in string table

evenbiggerfilename.obj /19 Offset 19 in string table

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 f u l l b i g f i l

10 e n a m e . o / \n e

20 v e n b i g g e r f

30 i l e n a m e . o b

40 j / \n

Figure 10-4: Symbol Table Example (Continued)

OS/2 Application Binary Interface for PowerPC (32-bit)

124 Release 1

This member has a special name consisting of three slashes padded on the right by spaces
(“/// “).

The data for this member is a sequence of null-terminated full file names. There is a one-to-
one correspondence between entries in the full file name string table and members in the LIB
file. If the full file name is not available, then the file name (same as lib_name) is used.

Following is an example of a full file name string table.

Figure 10-6: Full File Name String Table Example

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 / s r c / t e s t /

10 r e g u l a r n a m

20 e . o \0 / d e b u g

30 / f u l l b i g f i

40 l e n a m e . o \0 e

50 v e n b i g g e r f

60 i l e n a m e . o b

70 j \0

Release 1 125

Process Creation and Dynamic Loading

11 Process Creation and Dynamic Loading
This chapter contains information about process creation and the initial runtime environment
for a newly created process. It also contains information on the Global Offset Table and the
Procedure Linkage Table and how they are initialized at process creation.

OS/2 Application Binary Interface for PowerPC (32-bit)

126 Release 1

11.1 Process Virtual Address Space
The 4 GB virtual address space of a process is partitioned into four areas.

Table 11-1: Virtual Address Space Layout

Start Address Area Name

0x00000000 Private Memory Area

(See below) Coerced Memory Area

(See below) Global Memory Area

0xf0000000 System Reserved Area

Area Name Description

Private Memory
Area

This area contains the process’ private memory. It contains virtual
addresses from 0 up to the start of the Coerced Memory Area.

Coerced Memory
Area

This memory area is used for memory objects that are coerced to the
same virtual address for all process. When a memory object is
allocated in this memory area, the virtual address range of the object
is reserved in the virtual address space of every process. However,
the memory objects in this area must be explicitly mapped into a
process in order to be visible by that process. A memory object can
be shared by mapping it into multiple processes. Memory objects in
this area can have different access protections for each process
mapping the object.
The size of the Coerced Memory Area is configurable and is set at
boot time.

Global Memory
Area

This memory area is used for global memory objects that are coerced
to the same virtual address for all process. When a memory object is
allocated in this memory area, the virtual address range of the object
is reserved in the virtual address space of every process. The object
is immediately visible in all processes, no explicit mapping is
necessary. Thus memory objects in the Global Memory Area are
shared with all processes. All processes have the same access
protection to the memory object.
The size of the Global Memory Area is configurable and is set at boot
time.

System Reserved
Area

This memory area is reserved for use by the system. It is 256 MB in
size and occupies the virtual address range 0xf0000000 to
0xffffffff. This area is not addressable by the process.

Release 1 127

Process Creation and Dynamic Loading

When an executable or dynamic link library is loaded into a process, the various PT_LOAD
segments are allocated to specific memory areas. All segments are coerced to the same
virtual address in each process that contains the segment image.

In order to efficiently support demand paging from load modules, the load modules must be
statically linked with the file offsets and virtual addresses of segments congruent modulo the
page size. Although the current page size for PowerPC is 4096 bytes, file offsets,
p_offset, and virtual addresses, p_vaddr, of segments shall be congruent modulo 64K
(0x10000) or larger powers of 2. This allows files to be suitable for paging if/when
implementations with larger page sizes appear. The value of the p_align member of each
program header entry shall be 0x10000.

Table 11-2: Load Module Memory Area Usage

PT_LOAD Segment Executable Dynamic Link Library

PF_R | PF_X
(includes Code, GOT,
PLT and read-only data)

Private Memory Area
This is shared with other
processes running the same
executable.

Global Memory Area
This is shared with all
processes.

PF_R | PF_W
(read/write data)

Private Memory Area
This is not shared with other
processes but each process’
copy resides at the same virtual
address.

Coerced Memory Area
This is not shared with
other processes but each
process’ copy resides at the
same virtual address.

PF_R | PF_W | PF_S
(shared read/write data)

Private Memory Area
This is shared with other
processes running the same
executable.

Coerced Memory Area
This is shared with all other
processes using the
dynamic link library.

OS/2 Application Binary Interface for PowerPC (32-bit)

128 Release 1

Following is an example of an executable file that has been linked with a base address of
0x00010000 (64K)

Even though the file offsets and the virtual addresses of the load segments are congruent
modulo 64K, up to four pages in the ELF file can hold impure text or data.

• The first page of the text segment may contain the ELF header and other non-text
information.

• The last page of the text segment may contain a copy of the beginning of the data
segment.

• The first page of the data segment may contain a copy of the end of the text segment.

Figure 11-1: Example Executable File

File Offset ELF File Virtual
Address

0x0 ELF Header

Program Header table

Other Information

0x2f8 Text Segment
...

0x13dc8 bytes

0x000102f8

0x000242ff

0x140c0 Data Segment
...

0x1a58 bytes

0x000340c0

0x000390ff

0x15b18 Other Information

Table 11-3: Example Executable Program Header Table Entries

Member Text Segment Data Segment

p_type PT_LOAD PT_LOAD

p_offset 0x2f8 0x140c0

p_vaddr 0x000102f8 0x000340c0

p_paddr 0 (unspecified) 0 (unspecified)

p_filesz 0x13dc8 0x1a58

p_memsz 0x14008 0x5040

p_flags PF_R | PF_X PF_R | PF_W

p_align 0x10000 0x10000

Release 1 129

Process Creation and Dynamic Loading

• The last page of the data segment may contain non-data information.

Logically, the system enforces memory access permissions as if each load segment were
complete and separate in the ELF file. Segment addresses are adjusted to ensure that each
logical page in the virtual address space has a single set of memory access permissions.

In Figure 11-1, “Example Executable File”, above, the file page spanning the end of the text
segment and the beginning of the data segment, file offset 0x14000 to 0x15000, is mapped
into memory twice. First at virtual address 0x24000 for the text segment and second at
virtual address 0x34000 for the data segment.

If the data segment has p_memsz greater than p_filesz, then the memory between
p_filesz and p_memsz holds uninitialized data which is defined by the system to begin
with zero values. Thus the memory in this range must be set to zero by the loader.

The relative position of segments in a load module, as specified by the virtual addresses in
the program header table, need not be maintained by the loader. The loader can locate the
segments of a load module at any virtual address without regard to its relative relationship
with the other segments in the load module. This is possible for the following reasons.

• All load modules, both executables and dynamic link libraries, contain position
independent code.

Figure 11-2: Example Executable Process Image Segments

Virtual Address

0x00010000 Header padding
0x2f8 bytes

0x000102f8 Text Segment
...

0x13dc8 bytes

0x000240c0 Data padding
0xf40 bytes

0x00034000 Text padding
0xc0 bytes

0x000340c0 Data Segment
...

0x1a58 bytes

0x00035b18 Uninitialized data
(cleared to zeros)
0x35e8 bytes

0x00039100 Page padding
0xf00 bytes

OS/2 Application Binary Interface for PowerPC (32-bit)

130 Release 1

• The GOT and PLT are located in the text segment and there is only one text segment
per load module. All references between the code and the GOT and PLT are
intrasegment and thus invariant.

• All intersegment references among data segments shall have a relocations (preferably
R_PPC_RELATIVE) to adjust them for changes in the relative positions of the segments.

Release 1 131

Process Creation and Dynamic Loading

11.2 Process Initialization
This section contains information the initialization of a process. An process consists of an
executable and multiple dynamic link libraries dynamically linked together into the process
memory image.

An OS/2 dynamic link library is a dynamic link library with an os_type of EOS_OS2. A
Shared Services dynamic link library is a dynamic link library with an os_type of EOS_PN.

11.2.1 OS/2 Process

The entry point of an OS/2 executable is specified by the e_entry member of the ELF
header. When control is passed to the entry point, all OS/2 dynamic link libraries in the
process have been called for initialization. Any Shared Services dynamic link libraries used
by the process must be explicitly called for initialization, if necessary. The contents of the
registers at the entry point are as follows.

11.2.1.1 Dynamic Linking of Shared Services Dynamic Link Libraries

Shared Services dynamic link libraries may be dynamically linked into the address space of
an OS/2 process. The converse is not true.

Table 11-4: OS/2 Process Initial Register State

Register Contents

r1 Stack pointer.

r2 Pointer to current thread’s Thread Information Block. See § 11.4, “Thread
Information Block”, on page 134.

r3 Module handle for the executable.

r4 0 (zero).

r5 Pointer to the process’ environment data. The environment data is a
sequence of null-terminated strings followed by a null byte.

r6 Pointer to the command line. The command line is a null-terminated string.

LR Return address to the system.

All other
registers

Contents are unspecified.

OS/2 Application Binary Interface for PowerPC (32-bit)

132 Release 1

11.2.2 Shared Services Process

The entry point of a Shared Services executable is specified by the e_entry member of the
ELF header. Dynamic link libraries in the process must be explicitly called for initialization, if
necessary. The contents of the registers at the entry point are as follows.

11.2.3 OS/2 Dynamic Link Library Initialization

The initialization/termination entry point of an OS/2 dynamic link library is specified by the
DT_INITTERM entry in the Dynamic Segment. The default value for DT_INITTERM is the
address of the symbol _DLL_InitTerm. An OS/2 dynamic link library may be called at the
initialization/termination entry point when it is made part of the process image. This is
determined by the DT_IT value. The default value of DT_IT is
ELF32_IT_INFO(IT_GLOBAL, IT_GLOBAL). Shared Services dynamic link libraries must
be explicitly called for initialization, if necessary. The contents of the registers upon entry to
the initialization/termination entry point are as follows.

Table 11-5: Shared Services Process Initial Register State

Register Contents

r1 Stack pointer.

r2 Pointer to current thread’s Thread Information Block. See § 11.4, “Thread
Information Block”, on page 134.

r3 Pointer to the argument information. The argument information consists of
argc followed by the argv array followed by the env array.

All other
registers

Contents are unspecified.

Table 11-6: Dynamic Link Library Initialization Register State

Register Contents

r1 Stack pointer.

r2 Pointer to current thread’s Thread Information Block. See § 11.4, “Thread
Information Block”, on page 134.

r3 Module handle for the dynamic link library.

r4 0 (zero) indicating the initialization/termination entry point is being called for
initialization.

LR Return address to the system.

All other
registers

Contents are unspecified.

Release 1 133

Process Creation and Dynamic Loading

11.3 Process Termination
This section contains information the termination of a process. When a process is
terminated, all OS/2 dynamic link libraries that are part of the process image may get called
for termination. Shared Services dynamic link libraries must be explicitly called for
termination, if necessary.

11.3.1 OS/2 Dynamic Link Library Termination

The initialization/termination entry point of an OS/2 dynamic link library is specified by the
DT_INITTERM entry in the Dynamic Segment. An OS/2 dynamic link library may be called at
the initialization/termination entry point when it is removed from the process image. This is
determined by the DT_IT value. Shared Services dynamic link libraries must be explicitly
called for termination, if necessary. The contents of the registers upon entry to the
initialization/termination entry point are as follows.

Table 11-7: OS/2 Dynamic Link Library Termination Register State

Register Contents

r1 Stack pointer.

r2 Pointer to current thread’s Thread Information Block. See § 11.4, “Thread
Information Block”, on page 134.

r3 Module handle for the dynamic link library.

r4 1 (one) indicating the initialization/termination entry point is being called for
termination.

LR Return address to the system.

All other
registers

Contents are unspecified.

OS/2 Application Binary Interface for PowerPC (32-bit)

134 Release 1

11.4 Thread Information Block
The r2 register always points to the current thread’s Thread Information Block. The r2
register should never be modified by the application.

Note: uint32 is an unsigned 32-bit integer data type.

See the OS/2 Programming documentation for a description of the extended thread
information block for OS/2 processes.

Figure 11-3: Thread Information Block, thread_info_block_t

typedef struct
{

void * exception;
void * stacklow;
void * stackhigh;
void * extended;
uint32 version;
uint32 threadid;
void * sync1;
void * sync2;
uint32 reserved1;
uint32 reserved2;

} thread_info_block_t;

Member Description

exception This member holds the head of the thread’s exception handler
chain.

stacklow This member holds the lowest valid address in the thread’s
stack.

stackhigh This member holds the next address greater than the highest
valid address in the thread’s stack.

extended The member holds the address of the thread’s extended
thread information block. The extended thread information
block will contain thread package-specific information.

version This member holds the version number of the
thread_info_block_t data structure.

threadid This member holds the thread’s id. The thread id is unique
within the process.

sync1
sync2

These members are reserved for synchronization.

reserved1
reserved2

These members are reserved for future use.

Release 1 135

Process Creation and Dynamic Loading

11.5 Global Offset Table (GOT)

In general, position independent code cannot contain absolute virtual addresses. A load
module uses its Global Offset Table to hold the absolute virtual addresses that cannot be
held in the code. Using position independent techniques, the code obtains the addresses of
memory objects from the GOT and can then access the objects.

The Global Offset Table is initialized, by the static linker, to contain the information needed by
its relocation entries (See § 9.1.2.3, “Relocation”, on page 106 for additional information on
relocation types). Entries in the GOT are relocated only if they have associated relocation
entries, some of which are R_PPC_RELATIVE and R_PPC_GLOB_DAT. The dynamic linker
processes the relocation entries and sets the GOT entries to the resultant values.

Each load module has its own Global Offset Table and consequently a symbol may appear in
several tables. The dynamic linker processes all Global Offset Table relocations for all load
modules before transferring control to the process. This ensures that all absolute virtual
addresses are valid and available for the process code. Once a process begins execution its
memory segments must remain at fixed virtual addresses. The Global Offset Table resides in
the .got section referenced by the DT_GOT entry in the Dynamic segment

The symbol _GLOBAL_OFFSET_TABLE_ is used to access the Global Offset Table and is the
reference address for the GOT. The symbol may reside in the center of the GOT allowing for
both positive and negative offsets into the array of GOT entries. Four entries in the Global
Offset Table are reserved.

A load module’s Global Offset Table must reside at a fixed relative location to the load
module’s code. The code establishes addressability to the GOT by performing a branch and
link to _GLOBAL_OFFSET_TABLE_-4 which returns the address of
_GLOBAL_OFFSET_TABLE_ in LR. Because the branch and link instruction must be
constructed by the static linker, a fixed relative relationship exists between the code and
Global Offset Table. This can be satisfied by the static linker placing the GOT in the same
segment as the code, a read-only segment, or by placing the GOT in some other segment

Table 11-8: Reserved Global Offset Table Entries

Entry Description

_GLOBAL_OFFSET_TABLE_[-1] This entry shall hold a blrl instruction. To obtains the
address of the Global Offset Table, a function can call
this entry (bl _GLOBAL_OFFSET_TABLE_-4) and
have the address of the symbol
_GLOBAL_OFFSET_TABLE_ returned in LR.

_GLOBAL_OFFSET_TABLE_[0] This entry shall hold the address of the Dynamic
Segment, referenced by the symbol _DYNAMIC. This
entry is initialized by the static linker.

_GLOBAL_OFFSET_TABLE_[1] Reserved and shall be set to zero.

_GLOBAL_OFFSET_TABLE_[2] Reserved and shall be set to zero.

OS/2 Application Binary Interface for PowerPC (32-bit)

136 Release 1

and having the system loader respect the relative placement of segments as specified in the
load module by the static linker.

Note: The use of the branch and link instruction to establish addressability to the GOT
requires that the label _GLOBAL_OFFSET_TABLE_ is within ±32MB of the
bl _GLOBAL_OFFSET_TABLE_-4 instruction in all functions accessing the GOT.

Reviewer’s Note: Alternate schemes of establishing addressability to the GOT have been
proposed. In essence, instead of bl _GLOBAL_OFFSET_TABLE_-4 to establish
addressability to the GOT, a bl to a find_got routine that is at a fixed relative location
to the code is used. The find_got routine is patched by the loader to return the
address of the GOT, which could now be placed anywhere (most interesting is shared,
coerced memory). This scheme could be used in addition to the current scheme. See
the example below.

Description Code Sequence

Current ABI bl _GLOBAL_OFFSET_TABLE_-4
...

blrl
_GLOBAL_OFFSET_TABLE_:
...

mflr %r31

Additional technique for
establishing GOT
addressability. The
compiler would call an
alternate function to return
the address in r12. This
function would be patched
by the loader to return the
correct address of the GOT.

bl _GLOBAL_OFFSET_TABLE_ADDRESS
...
_GLOBAL_OFFSET_TABLE_ADDRESS:

addis %r12, 0, _GLOBAL_OFFSET_TABLE_@ha
addi %r12, %r12, _GLOBAL_OFFSET_TABLE_@l
blr

...
mr %r31, %r12

Release 1 137

Process Creation and Dynamic Loading

11.6 Procedure Linkage Table (PLT)
The Procedure Linkage Table redirects function calls to functions whose location is unknown
by the static linker. The static linker cannot resolve execution transfer between load modules
and uses the PLT as an intermediary. The static linker arranges for control to be transferred
to a PLT entry which will be modified by the dynamic linker to transfer control to the proper
destination. This preserves the position independence of the code and allows load modules
to reside at arbitrary memory locations. Each load module has its own Procedure Linkage
Table to direct calls to functions external to the load module. The Procedure Linkage Table
resides in the .plt section referenced by the DT_PPC_PLT entry in the Dynamic Segment.

For this ABI, the Procedure Linkage Table is not initialized in the load module by the static
linker. Instead, the static linker simply reserves space for the PLT in the load module and the
dynamic linker initializes and manages its memory image. The exact contents of the PLT are
implementation dependent subject to the following rules.

1. The Procedure Linkage Table is partitioned in the following manner with N being the
number of PLT entries in the load module.

2. The PLT Prologue is reserved for use by the dynamic linker. There shall be no
branches from the load module into the Prologue.

3. For each function call in the load module redirected through the PLT, there shall be
one PLT entry, 2 words in length. The static linker shall direct all branches for
redirected function calls to the first word of its corresponding PLT entry, e.g. for PLT
entry i, i ranging from 1 to N inclusive, the branch would be directed to .plt + 72 +
(i - 1) * 8.

If N > 8192, then for PLT entry indices i, where i > 8192, only even i ndices will be
used and the corresponding PLT entries shall be 4 words in length.

4. The PLT Epilogue is reserved by use by the dynamic linker. There shall be no
branches from the load module into the Epilogue.

Note: The use of branch and link instructions to transfer control to PLT entries requires that
the PLT entries are within ±32MB of the bl instructions.

The relocation entries located via the DT_JMPREL tag in the Dynamic segment provide the
information necessary for the dynamic linker to setup the Procedure Linkage Table. There is
a one-to-one correspondence between the PLT entries and the DT_JMPREL relocation
entries, i.e. the first relocation entry provides the relocation information for the first PLT entry
and so on. Each relocation entry is of type R_PPC_JMP_SLOT and the r_offset member
holds the location of the first byte of the associated PLT entry, e.g. .plt + 72 + (i - 1) * 8.

PLT Prologue
18 words (72 bytes)

PLT Entries
N * 2 words (N * 8 bytes)

PLT Epilogue
N words (N * 4 bytes)

OS/2 Application Binary Interface for PowerPC (32-bit)

138 Release 1

Following is an example used to illustrate how the Procedure Linkage Table might be utilized
by a dynamic linker. This is an example only and does not specify the contents of the PLT or
the behavior of the dynamic linker. Figure 11-4, “Procedure Linkage Table Example”, shows
how the dynamic linker might initialize the PLT for an OS/2 load module.

Figure 11-4: Procedure Linkage Table Example

PLT Prologue (18 words)
.PLTcall:

addis %r11, %r11, .PLTtable@ha
lwz %r11, .PLTtable@l(%r11)
mtctr %r11
bctr
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

PLT Entries (2 * N words)
.PLT1:

addi %r11, 0, 4*0
b .PLTcall

...

.PLTj:
addi %r11, 0, 4*(j - 1)
b .PLTcall

...

.PLTk:
b <target>
nop

...

.PLTN:
addi %r11, 0, 4*(N - 1)
b .PLTcall

PLT Epilogue (N words)
.PLTtable:

<N word table>

Release 1 139

Process Creation and Dynamic Loading

The PLT is initialized by the dynamic linker during process initialization.

1. The dynamic linker writes the instructions for .PLTcall in the PLT Prologue adjusting
them for the virtual address of .PLTtable.

2. The dynamic linker locates the PLT relocation entry for each PLT entry i. The relocation
entry will be of type R_PPC_JUMP_SLOT, its r_offset member will contain the address
of .PLTi and its symbol table index will point to the target symbol, e.g. foo.

3. The dynamic linker determines the proper value of symbol foo and initializes the code at
.PLTi in one of two ways.

• If foo is reachable from .PLTi by a single branch instruction, a branch to foo
instruction is placed in the first word at .PLTi.

• If foo is not reachable from .PLTi by a single branch instruction, the address of
foo is stored in the PLT Epilogue at .PLTtable + (i - 1) * 4, an instruction which
loads r11 with (i - 1) * 4 is placed in the first word at .PLTi and a branch to
.PLTcall instruction is placed in the second word at .PLTi.

If i > 8192, then i must be even and the size of .PLTi is 4 words. More than one
instruction will be necessary to load r11 with (i - 1) * 4.

4. The PLT entry is now initialized to transfer control to the target function either directly, via
a direct branch, or indirectly through .PLTcall.

Note: Lazy binding of PLT entries is not supported by this ABI.

OS/2 Application Binary Interface for PowerPC (32-bit)

140 Release 1

Release 1 141

Appendix A Compiler Support Extensions
This appendix contains ABI extensions added to support additional compiler function.

This appendix also includes the description of the recently adopted COMDAT extension to
ELF.

OS/2 Application Binary Interface for PowerPC (32-bit)

142 Release 1

A.1 ELF

A.1.1 Sections

The following section types are defined. These sections are used to communicate
information from the compiler to the static linker. These sections are only valid in object files.

Two members in the section header, sh_link and sh_info, hold special information
depending on the section type.

Table A-1: Section Types, sh_type

Name Value Meaning

SHT_COMDAT 12 This section contains COMDAT code or data and is
otherwise treated the same as SHT_PROGBITS. The
static linker will choose only one SHT_COMDAT
section of a given name from all like named
SHT_COMDAT sections encountered during the link.

SHT_IDMDLL 0x60001002 This section holds the information to perform symbol
name demangling. See § A.1.1.2, “Symbol Name
Demangling”, on page 144 for details.

SHT_DEFLIB 0x60001003 This section holds the information about static
libraries to be processed by the static linker. See
§ A.1.1.3, “Default Library”, on page 145 for details.

Table A-2: sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_COMDAT The section header index of
the section into which this
section shall be combined in
the output file. This will allow
many small sections to be
combined into one. The
value SHN_UNDEF indicates
that this section is not to be
combined into another
section.

COMDAT selection criteria.
See Table A-3, “COMDAT
Selection Criteria” below for
possible values.

Release 1 143

The SHT_IDMDLL and SHT_DEFLIB sections must be word aligned. Thus the
sh_addralign value for these sections is 4.

A.1.1.1 COMDAT Section

Object files may contain one or more SHT_COMDAT sections uniquely named within the
object file. These section exist to support C++ templates and other like constructs. A
compiler can emit the same SHT_COMDAT section into several object files using the same
section name. The static linker will select one of the like named sections to be placed in the
resulting load module. The selection is based upon the following criteria specified in the
sh_info field of the section header table entry of the COMDAT section.

SHT_PROGBITS The section header index of
the section into which this
section shall be combined in
the output file. This will allow
many small sections to be
combined into one. The
value SHN_UNDEF indicates
that this section is not to be
combined into another
section.

0

SHT_IDMDLL
SHT_DEFLIB

The section header index of
the string table used by
entries in this section.

0

Table A-3: COMDAT Selection Criteria

Name Value Meaning

COMDAT_NONE 0 Invalid selection criteria.

COMDAT_NOMATCH 1 Only one instance of a SHT_COMDAT section of the
given name is allowed. A link warning is generated
otherwise.

COMDAT_PICKANY 2 Pick any instance of a SHT_COMDAT section of the
given name.

COMDAT_SAMESIZE 3 Pick any instance of a SHT_COMDAT section of the
given name but all instances of SHT_COMDAT
sections of the given name must have the same size.
A link warning is generated otherwise.

Table A-2: sh_link and sh_info Interpretation (Continued)

sh_type sh_link sh_info

OS/2 Application Binary Interface for PowerPC (32-bit)

144 Release 1

The following symbol bindings are also defined.

A.1.1.2 Symbol Name Demangling

Each object file may contain one SHT_IDMDLL section. The section contains exactly one
Elf32_Demangle structure.

The very first section of this type encountered by the linker will define the demangle dynamic
link library used by the static linker. The demangle dynamic link library contains two entry
points. The static linker shall call InitDemangleID32 before using the DemangleID32
function to demangle symbol names.

Table A-4: Symbol Binding, ELF32_ST_BIND

Name Value Meaning

STB_GLOBALOMIT 3 A global symbol that may be omitted from the output file. If
the symbol is undefined and there are no references to the
symbol (no relocation entries specifying its index), then the
symbol need not be defined (nor is it searched for in
libraries). It is otherwise treated the same as
STB_GLOBAL.

Figure A-1: Demangle Information Structure, Elf32_Demangle

typedef struct
{

Elf32_Word idm_dllname;
Elf32_Word idm_initparms;

} Elf32_Demangle;

Member Description

idm_dllname This member identifies the string table index of the name of
the dynamic link library containing the symbol name
demangling function. The name string is UTF-8 encoded.

idm_initparms This member holds the string table index of the parameters to
the dynamic link library initialization function.

Table A-5: InitDemangleID32 Function Prototype

unsigned long InitDemangleID32 (unsigned char *pszInitParms);

Parameter Description

pszInitParms This parameter is the null-terminated string provided by the
idm_initparms member of the Elf32_Demangle structure.

Release 1 145

A.1.1.3 Default Library

Each object file may contain one SHT_DEFLIB section. The section contains an array of
Elf32_Library structures. Each structure represents a library to be added to the end of
the list of default libraries to be searched by the static linker to resolve undefined symbols.

A.1.2 Note Information

The following note information is defined. This information, if present, resides in a PT_NOTE
segment of a load module.

Return Value A non-zero return value indicates successful initialization. A
zero return value indicates that initialization failed. If a failure is
indicated, the DemangleID32 function in the dynamic link
library should not be called.

Table A-6: DemangleID32 Function Prototype

unsigned long DemangleID32 (unsigned char *pszMangledName,
unsigned char *pbDemangledName,
unsigned long ulDemangledName);

Parameter Description

pszMangledName This parameter is the null-terminated symbol name to be
demangled.

pbDemangledName This parameter is a pointer to a buffer where the null-terminated
demangled name is to be returned.

ulDemangledName This parameter is the size of the buffer.

Return Value A non-zero return value indicates successful initialization. A
zero return value indicates that initialization failed. If a failure is
indicated, the pbDemangledName buffer contents are invalid.

Figure A-2: Default Library Structure, Elf32_Library

typedef struct
{

Elf32_Word lib_name;
} Elf32_Library;

Member Description

lib_name This member identifies the string table index of the name of a
static library. The name string is UTF-8 encoded.

Table A-5: InitDemangleID32 Function Prototype (Continued)

OS/2 Application Binary Interface for PowerPC (32-bit)

146 Release 1

A.1.2.1 Browser Information

A list of the full file names of the object files that contributed to the load module is kept in the
browse information. This information can be used by a code browser.

A.1.2.1.1 Browser Information Records

There are three record types. Each record begins with a single byte containing the record
type. It is immediately followed by a null-terminated string containing a full file name. The full
file name strings are UTF-8 encoded.

Table A-7: Browser Information

Field Description

namesz The size of name including the null-terminating byte.

descsz The size of desc information.

type 1

name The null-terminated string “IBM”.

desc This information is a collection of records described in § A.1.2.1.1, “Browser
Information Records”.

Table A-8: Browser Information Record Types

Type Description

0 The following string is the full file name of an object file included in the load
module.

1 The following string is the full file name of an object library file which has some of
its member object files included in the load module. This record type is followed by
additional information describing which member object files are included in the
load module. If necessary, a padding byte of zero follows the string to align the
additional information on a halfword boundary.
The additional information begins with a halfword containing the number, m, of
member object files included in the load module. This is followed by m halfwords
each containing the member number of the member object file. (e.g. 1 represents
the first member object file in the object file library.)

2 The following string is the full file name of an object library file which has all of its
member object files included in the load module.

Release 1 147

A.1.2.2 Version Information

File version information may need to be included in a load module. This information can be
used for file version identification and product service.

A.1.2.3 Description Information

The static linker may have a descriptive comment from the user to be included in a load
module. This information can be a description of the load module.

Table A-9: Version Information

Field Description

namesz The size of name including the null-terminating byte.

descsz The size of desc including the null-terminating byte.

type 2

name The null-terminated string “IBM”.

desc A null-terminated, UTF-8 encoded version string.

Table A-10: Description Information

Field Description

namesz The size of name including the null-terminating byte.

descsz The size of desc including the null-terminating byte.

type 3

name The null-terminated string “IBM”.

desc A null-terminated, UTF-8 encoded description string.

OS/2 Application Binary Interface for PowerPC (32-bit)

148 Release 1

Release 1 149

End of Document

This is the last page of the document.

