2024/12/02 16:17 1/2 0s2prog.055

[Q]: OS/2 vs. NT: paging subsystem
[A]: Jonathan de Boyne Pollard (2:257/609.3)

It's worth noting some interesting things about Windows NT when compared to OS/2 Warp in this
respect. The “portable executable”, PE, format for executable files used in Win32 *does* contain an
exact image in the file of the page as it is to be loaded into memory. When Windows NT demand loads
a page, it doesn't need to uncompress its contents. Indeed, in most cases it doesn't need to perform
relocation fixups either, because of a trick used when creating Win32 import libraries that means that
all of the fixups to references imported from other modules are concentrated in a single place. (This
trick is actually not specific to the PE executable format, and can be duplicated on 0S/2 with the LX
executable format as well. | have a replacement 052386.LIB that does it for fixups to the various
system API DLLs, if anyone is interested.)

The disadvantage, of course, is that reading in a page from DASD is more expensive on Windows NT
than it usually is on 0S/2. In the 32-bit LX executable format used by 0S/2, the compression scheme
will shrink the size of page images in the file quite noticably. Picking the file \OS2\CMD.EXE at
random, we notice that in memory object 1 all of the page sizes are between 3584 and 3072 bytes, a
reduction in size by between 12% and 25%. Because of the compression used in the LX executable
format, to demand page in a 4KiB page the program loader in the 0OS/2 kernel often doesn't actually
need to read 4KiB of data from disc.

On Windows NT, however, pages are the same size when stored on disc as they are in memory,
because the PE executable file format doesn't have compression. So for every 4KiB page to be
demand loaded, Windows NT has to read an entire 4KiB of data from disc.

It's worth noting that Windows NT attempts to compensate for this fact by the fact that NTFS has a
minimum cluster size of 4KiB. With HPFS on 0S/2, the smallest I/O transaction can be as small as a
single 512 byte (0.5KiB) sector, since that is the allocation unit size. Reading in a 3072-byte
compressed page image thus only need involve reading six or seven sectors, not eight. With NTFS on
Windows NT, since the smallest allocation unit size for the filesystem is 4KiB *anyway*, it doesn't
make any difference that the program loader needs to read a full eight sectors for each 4KiB page (or
even 9 or 10 sectors if the developer hasn't page-aligned the executable properly, which is possible if
he has played around with the linker flags). It couldn't read less even if it wanted to.

The most obvious effect of this design is that PE executables are much larger than LX executables. A
page containing repeated data (such as an initialised data page that is mostly zeroes, for example)
compresses very well in an LX executable. By contrast, a PE executable file contains a whole page's
worth of bytes for such a page. Viewing PE and LX executables with a hex file viewer is most
instructive. PE executables often have large runs of repeated data, most often large runs of zero
bytes. LX executables generally do not. (I say “generally”, because if they use Watcom C/C++ the
linker doesn't support compression, alas. This is a deficiency in Watcom's linker, and an unfortunate
example of the “jack of all trades, master of none” adage.) This is, of course, visible in the
comparative sizes of Win32 and 32-bit OS/2 executables.

One particular irony of the “uncompressing pages during a page-in is expensive, so we don't do it”
philosophy embodied in the PE executable file format design is that NTFS can compress file data
behind the scenes on the disc. So if an executable file is on an NTFS volume and NTFS has
compressed it when storing it on disc, the overhead of uncompressing data each time that there is a
page in operation won't have been avoided. All that has changed in reality is the portion of the
system that actually performs it. Rather than having the uncompression done by the process loader, it
is done by the filesystem driver. It is still done.

osFree wiki - http://www.osfree.org/doku/



Last update: 2014/06/20 05:08 ru:os2faq:0s2prog:0s2prog.055 http://www.osfree.org/doku/doku.php?id=ru:os2faq:0s2prog:0s2prog.055

Another further irony is that making the executable file format uncompressable, but having
compression in the filesystem itself, means that the page data in the in-memory file cache are
uncompressed, because of course that is how they are in the file itself. In contrast, when an LX
executable file is cached on 0S/2 the page data *are* compressed, and less RAM is required to cache
the file contents as a result. This is one contributory factor (of many, alas) to the greater physical
memory needs that Windows NT has when compared to 32-bit 0S/2.

From:
http://www.osfree.org/doku/ - osFree wiki

Permanent link:

Last update: 2014/06/20 05:08

http://www.osfree.org/doku/ Printed on 2024/12/02 16:17


http://www.osfree.org/doku/
http://www.osfree.org/doku/doku.php?id=ru:os2faq:os2prog:os2prog.055

