2025/11/03 14:20 1/5 osFree Whitepaper

osFree Whitepaper

About osFree

osFree is a @ free and open-source operating system project based on the @ L4 microkernel aiming
to be binary compatible with % 0S/2 (ia32). Also, a parallel coexistence of several “alien” OS API's is
possible.

The osFree project is aimed at producing an operating system with support of 0S/2 compatible
personality as the base personality. We have used the following rules in our research and
development:

e Usable

e Extensible
e Open

e Easy

As a result, we have the following considerations:

% CUA for usability (see IBM % SAA 5 CUA)

2 OOP principles and modularity in both Microkernel interfaces and @ SOM, together with
binary compatability, for extensibility

Documentation and Open-source for openness

All of the above for ease of use

Lightweight

0S/2 is one of most lightweight 32-bit OS. osFree also will be as lightweight as possible. We don't
want to request 1 Gb minimum for work. We want to make it work on as minimal hardware as it
possible. This will allow to use osFree in embeded area.

Open

osFree components come under open licenses like BSD and (L)GPL licenses. And we try to document
interfaces as much as possible. So you are free to extend it as you wish.

Object-oriented

osFree tries to extend object-oriented design of desktop to other parts of the system, using OOP
principles. We use % SOM as a base object model, as designed by IBM for OS/2 desktop and other
parts of the system. Also, we want to introduce CPI+, GPI+, PM+, i.e., we plan to make the object-
oriented wrappers for current CPl ¥, GPI ? and @ PM services. Access to low-level services of the

osFree wiki - http://185.82.219.184/doku/

http://185.82.219.184/doku/lib/exe/detail.php?id=en%3Adocs%3Ageneral%3Aindex&media=logos:fiasco.png
http://185.82.219.184/doku/lib/exe/detail.php?id=en%3Adocs%3Ageneral%3Aindex&media=logos:os2.gif
http://185.82.219.184/doku/lib/exe/detail.php?id=en%3Adocs%3Ageneral%3Aindex&media=logos:dos.gif
http://185.82.219.184/doku/lib/exe/detail.php?id=en%3Adocs%3Ageneral%3Aindex&media=logos:win16.gif
http://185.82.219.184/doku/lib/exe/detail.php?id=en%3Adocs%3Ageneral%3Aindex&media=logos:win32.gif
http://185.82.219.184/doku/lib/exe/detail.php?id=en%3Adocs%3Ageneral%3Aindex&media=logos:linux.jpg
http://185.82.219.184/doku/lib/exe/detail.php?id=en%3Adocs%3Ageneral%3Aindex&media=logos:java.gif
https://en.wikipedia.org/wiki/FOSS
https://en.wikipedia.org/wiki/L4_microkernel_family
https://en.wikipedia.org/wiki/FOSS
https://en.wikipedia.org/wiki/L4_microkernel_family
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/IBM_Common_User_Access
https://en.wikipedia.org/wiki/IBM_System_Application_Architecture
https://en.wikipedia.org/wiki/IBM_Common_User_Access
https://en.wikipedia.org/wiki/IBM_Common_User_Access
https://en.wikipedia.org/wiki/IBM_System_Application_Architecture
https://en.wikipedia.org/wiki/IBM_Common_User_Access
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/IBM_System_Object_Model
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/IBM_System_Object_Model
https://en.wikipedia.org/wiki/SOM
https://en.wikipedia.org/wiki/SOM
https://en.wikipedia.org/wiki/Presentation_Manager
https://en.wikipedia.org/wiki/Presentation_Manager

Last update: 2023/10/13 14:39 en:docs:general:index http://185.82.219.184/doku/doku.php?id=en:docs:general:index&rev=1697207969

kernel also planned to be represented as SOM objects.

Why re-implement 0S/2?

0S/2 has one of the most stable, robust and high-performance kernels. Written in assembly language,
it is highly-optimized and uses all i386 architecture features very extensively. It's modular design
allows to easy replace components with more featured/less resource-eating/cut off GUI, or customize
system to fit user preferences. It is highly configurable. We like its compact and clean API, it's easy to
use and intuitive powerful true %@ object-oriented user interface. It's uses one of the best general
purpose scripting languages named @ REXX as operating system scripting service with APl available
to any application. 0S/2 was advertised by IBM as “DOS better than DOS and Windows better than
Windows". It is true - it's VDM was the best ever existing. And not only DOS/Windows. It had Java and
XFree86 support very powerful too. So, we started loving 0S/2 as powerful integration platform on top
of single desktop. It has been used by marginals and non-conformists for years and always had its
own way. We want to continue following this way :) We can sleep peacefully knowing that it is not
popular between hackers and virus writers, they like mainstream.. But we can't stay this way -
starting at December 2006, IBM management decided to kill 0S/2 and 0S/2 community left with aging
system without kernel sources and with fading driver support. The driver support becomes more bad
each time, and almost all new drivers are ports from Linux. Petitions to IBM were failed as well.
Nevertheless, we want to continue our experience with 0OS/2. The most necessary task is kernel
rewriting. Here, it must be noted that 0S/2 still has 32-bit kernel. Existing kernel, even if having
sources, is not portable to other architectures, the main of which are ARM and x86_64. Modern
software is bloating quickly, so we will encounter the 32-bits OS limitations, the main of which is
impossibility to use more than 4 GB of RAM. Now common web browsers and offices eat up gigabytes
of RAM easily. Also. one of the main RAM consumers are VM's. And we should not forget about
positioning of OS/2 as Integration platform (TM), including VM's too. Because of that, 0S/2 needs a
new kernel. We've been always curious regarding IBM's experiments with 0OS/2 on top of microkernel.
We read a redbook about it. So, we meet with enthusiasm the suggestion to use L4 as a base. So this
project was started.

Why not migrate to other modern 0S?

IBM, Netlabs and other companies tries to move users to another OS like GNU/Linux, BSD, Windows
and others. We agree that TCO of current 0S/2 become bigger and bigger for home users. In servers
area 0S/2 also become obsolete (but still stable and mature). But we like approaches of IBM
according design of OS. We like it designed, not only developed. It is easy to use. It's APl is small and
clean. We want to continue work and program with 0S/2.

Compatible

osFree is planned to be compatible with most of current 0S/2 API. But not drivers. OS/2 drivers
become more and more obsolete, but we want to have modern hardware support. In current design
osFree can be hosted on most of actual kernels like L4, Linux, Windows, etc. As result we can reuse
existent drivers as is.

API compatibility allow us to have still clean and small APl and reuse existent applications. We have
no plan for full support of 16-bit part of 0S/2 because not so many applications which true 16-bit. For

http://185.82.219.184/doku/ Printed on 2025/11/03 14:20

https://en.wikipedia.org/wiki/Workplace_Shell
https://en.wikipedia.org/wiki/Workplace_Shell
https://en.wikipedia.org/wiki/REXX
https://en.wikipedia.org/wiki/REXX
http://185.82.219.184/doku/doku.php?id=en:docs:general:petitions
http://185.82.219.184/doku/lib/exe/fetch.php?media=downloads:docs:os2power.pdf

2025/11/03 14:20 3/5 osFree Whitepaper

most mixed 16/32 applications we will provide on-the-fly patching of 16-bit calls to true 32-bit calls. As
result we will have true 32-bit applications (after many years of mixed 16/32 applications).

It is possible to embed the mixed 16/32 to pure 32-bit apps converter in the executable file loader. So,
the pure 32-bit application will always be in memory. It is even possible to save the conversion result
to disk, which could be started again without the need to convert it again (just like Just-in-time-
compilation in Java).

We have a plan for limited support of DOS and Winl16 personalities (for historic reasons). But we don't

limit you to add more personalities.

General design of osFree
We propose to reuse some or most of 0S/2 PPC design with some reformulation. Since 0S/2 support is
our primary target, of course, we propose to reuse most of 0S/2 technologies.

In general, we'll use L4 microkernel as a core of the system. On top of L4 we plan to implement the
following personalities:

Neutral personality
0S/2 personality
Linux personality
MVM personality

o DOS personality

o Win16 personality
Win32 personality
e Java personality

Neutral personality or Personality-neutral services is the real OS API. It is a set of servers and
libraries giving away various services. All other personalities need to work via Neutral personality.
Most probably, many Neutral services API's will be reused almost as is (in the form of simple
wrappers). The Neutral Personality APl can be compared with Native NT API - they are almost
functionally equivalent.

0S/2 personality aimed to provide partial or full set of OS/2 API. At the first stage we want to
implement core 32-bit API. In most cases 0OS/2 personality calls are planned to be just forwarders of
calls to Neutral personality.

Linux personality aimed to provide full functionality of Linux. Linux is one of the current mainstream
OSes. It provides lots of development tools, libraries and applications, and we want to use Linux as
one of the main development platforms. We plan to reuse the L4Linux project for this. If everything
will work fine, we'll just recompile the L4Linux project and reuse it.

MVM personality aimed to provide the functionality of an environment for running multiple Virtual
Machines with unmodified OS'es. DOS and Win16 personalities will be based on MVM personality with
support of Virtual Device Drivers

DOS personality aimed to provide the functionality of DOS. DOS was supported by the original 0S/2
and is still used by many people. For us, this direction of development is very perspective, though it
has less priority than OS/2 personality development. So, we don't want to lose too much forces on this
goal, so we'll most probably reuse other projects here, like QEMU, VBOX, DosBox, DosEmu, FreeDos

osFree wiki - http://185.82.219.184/doku/

http://185.82.219.184/doku/doku.php?id=en:docs:general:neutral
http://185.82.219.184/doku/doku.php?id=en:docs:general:os2
http://185.82.219.184/doku/doku.php?id=en:docs:general:linux
http://185.82.219.184/doku/doku.php?id=en:docs:general:mvm
http://185.82.219.184/doku/doku.php?id=en:docs:dos

Last update: 2023/10/13 14:39 en:docs:general:index http://185.82.219.184/doku/doku.php?id=en:docs:general:index&rev=1697207969

etc.

Winl6 personality aimed to provide partial or full functionality of Win16 up to version Windows ME.
Win16 personality actually work under MVM prsonality. Seamless desktop integration are planned.

Win32 personality aimed to provide partial or full functionality of Win32. Windows is also one of the
mainstream OSes and we can't ignore its existence. If it will be possible to para-virtualize ReactOS
then we'll also provide Win32 functionality (there is an idea of implementing a HAL, working above
l4env/l4re). Otherwise Win32 support will come via WINE project.

Java personality aimed to provide JVM. 0S/2 JVM was one of best implementations.
Of course you are free to add another personality.

At present time we have closed view about file systems support and boot process. We are reusing
0S/2 concept of IFS'es. Most notable differences from 0S/2 PC are the absence of MiniFSD (like it is in
0S/2 PPC) and 32-bit IFS main driver. For more information about the boot process look at Boot
process guides and references.

For general development guidelines see Developer Reference.

Why use a microkernel

e microkernel can serve as a base for different OS API's, implemented on top of it. These API's can
be executed concurrently, having their common part as small as the microkernel is. This allows
for parallel (non-layered) implementation of concurrent API's.

¢ OS APl over a microkernel is implemented in user level, leaving only microkernel in privileged
kernel mode. Such OS components as thread schedulers, memory managers, swapper task,
even direct hardware access and interrupt handling, are moved to userlevel too.

e this allows implementing stable system with rock stable small kernel and less stable user level
components, which (as it shows Minix design, for example) can be restarted (even
automatically) after it has failed. The microkernel itself can be well-debugged, and even,
formally verified with mathematical methods as error-proof. So that, the errors in microkernel
are very unlikely, and other OS components could be not so critical.

e this also allows to use ordinary development techniques for drivers as driver in microkernel
system does not radically differ from other applications.

* microkernel architecture improves dependability of the system, which means that dependencies
between system components are well-defined. Servers executing over a microkernel, interact
only through well-defined interfaces and incapsulate their internals, which closely resembles the
object-oriented approach.

e microkernel system improves isolation of errors inside system components, because servers are
executing in separate address spaces.

e microkernel abstracts hardware from usermode servers, which allows implementation of
portable operating systems, where all usermode system part remains unchanged in its source
form, requiring only its recompilation.

Why L4?

e L4 is a second-generation microkernel, which improves overall system performance
significantly. This can be demonstrated by L4Linux as an example. L4Linux is essentially a port

http://185.82.219.184/doku/ Printed on 2025/11/03 14:20

http://185.82.219.184/doku/doku.php?id=en:docs:win16
http://185.82.219.184/doku/doku.php?id=en:docs:general:win32
http://185.82.219.184/doku/doku.php?id=en:docs:general:java
http://185.82.219.184/doku/doku.php?id=en:ibm:ifs:index
http://185.82.219.184/doku/doku.php?id=en:ibm:ifs:index
http://185.82.219.184/doku/doku.php?id=en:docs:boot:index
http://185.82.219.184/doku/doku.php?id=en:docs:boot:index
http://185.82.219.184/doku/doku.php?id=en:develop:guidelines
http://www.minix3.org/

2025/11/03 14:20 5/5 osFree Whitepaper

of Linux to a new 'L4' architecture. Its hardware access code was changed, so it is accessed not
directly, but through L4 mechanisms. The Linux kernel performance can be tested by
benchmarks, which shows a loss of about 2% of performance of native Linux kernel. We were
tried to start L4Linux on a real machine and did not noticed the difference. This shows that L4
demonstrated excellent performance with very small loss.

e It's minimality and moving all policies outside the kernel, leaving inside it only minimal set of
mechanisms, makes it almost universal and makes it possible to implement almost any desired
API.

¢ We're must not reinvent the wheel: it has all required mechanisms, which we need

e A set of general-purpose services is already implemented for it, so we're not left with bare
kernel

e L4Linux can be used as Linux personality base. It is yet at development stage but nevertheless,
almost all is working. On our laptop, only PCMCIA modem was not working (it could be fixed,
though, by doing ioremap to other addresses - the original addresses used by the driver, are
used in L4-based system). Wi-fi, bluetooth stack, USB stack, filesystems, CD writing - all these
were working! And one more inconvenience: as the video is working over the native graphical
L4 console, which at present is working via VESA mode (only selected video cards are supported
with acceleration), so the video support is way limited.

e Device Driver Environment (DDE) could be used in future as a drivers framework. It ports Linux
(DDE/Linux) and FreeBSD (DDE/FreeBSD) drivers to L4 userlevel. So, the big codebase of Linux
drivers can be reused in future. In contrast with windows ones, they are available in source form
and could be ported to user-level.

Contributing

We have a lot of things still to do, so any help is welcome. Not only for code development, but also
documentation writing, web page maintenance, distribution maintenance, and much more. See the
Project Roadmap for more information about where we intend to go.

We are also looking for developers. For newbies, we have a number of small tasks. If you're an
experienced developer, there are plenty of complex tasks awaiting your talents! Check out the
development page for more information about developing for us, and look at our licensing.

osFree IRC channel is #osFree at EFnet and eCSnet.

1)

0S/2 kernel Control Program Interface
2)

Graphics Programming Interface

From:
http://185.82.219.184/doku/ - osFree wiki

Permanent link:

Last update: 2023/10/13 14:39

osFree wiki - http://185.82.219.184/doku/

http://185.82.219.184/doku/doku.php?id=en:teams
http://185.82.219.184/doku/doku.php?id=en:roadmap
http://185.82.219.184/doku/doku.php?id=en:teams
http://185.82.219.184/doku/doku.php?id=en:smalltasks
http://185.82.219.184/doku/doku.php?id=en:bigtasks
http://185.82.219.184/doku/doku.php?id=en:develop
http://185.82.219.184/doku/doku.php?id=en:legal
irc://irc.ecomstation.com/osfree
http://185.82.219.184/doku/
http://185.82.219.184/doku/doku.php?id=en:docs:general:index&rev=1697207969

	[osFree Whitepaper]
	osFree Whitepaper
	About osFree
	Lightweight
	Open
	Object-oriented
	Why re-implement OS/2?
	Why not migrate to other modern OS?
	Compatible
	General design of osFree
	Why use a microkernel
	Why L4?
	Contributing

