
2025/07/19 21:28 1/2 Wildcards

osFree wiki - http://185.82.219.184/doku/

Wildcards

Wildcards let you specify a file or group of files by typing a partial filename. The appropriate directory
is scanned to find all of the files that match the partial name you have specified.

Wildcards are usually used to specify which files should be processed by a command. If you need to
specify which files should not be processed see File Exclusion Ranges (for internal commands), or
EXCEPT (for external commands).

Most internal commands accept filenames with wildcards anywhere that a full filename can be used.
There are two wildcard characters, the asterisk [*] and the question mark [?], plus a special method of
specifying a range of permissible characters.

An asterisk [*] in a filename means “any zero or more characters in this position.” For example, this
command will display a list of all files in the current directory:

 [c:\] dir *.*

If you want to see all of the files with a .TXT extension, you could type this:

 [c:\] dir *.txt

If you know that the file you are looking for has a base name that begins with ST and an extension
that begins with .D, you can find it this way. Filenames such as STATE.DAT, STEVEN.DOC, and ST.D
will all be displayed:

 [c:\] dir st*.d*

With CMD.EXE, you can also use the asterisk to match filenames with specific letters somewhere
inside the name. The following example will display any file with a .TXT extension that has the letters
AM together anywhere inside its base name. It will, for example, display AMPLE.TXT, STAMP.TXT,
CLAM.TXT, and AM.TXT :

 [c:\] dir *am*.txt

A question mark [?] matches any single filename character. You can put the question mark anywhere
in a filename and use as many question marks as you need. The following example will display files
with names like LETTER.DOC and LATTER.DAT, and LITTER.DU : <code> [c:\] dir l?tter.d?? </code>
The use of an asterisk wildcard before other characters, and of the character ranges discussed below,
are enhancements to the standard wildcard syntax, and may not work properly with software other
than CMD.EXE and Take Command. “Extra” question marks in your wildcard specification are ignored
if the file name is shorter than the wildcard specification. For example, if you have files called
LETTER.DOC, LETTER1.DOC, and LETTERA.DOC, this command will display all three names: <code>
[c:\] dir letter?.doc </code> The file LETTER.DOC is included in the display because the “extra”
question mark at the end of “LETTER? ” is ignored when matching the shorter name LETTER. In some
cases, the question mark wildcard may be too general. You can also specify what characters you want
to accept (or exclude) in a particular position in the filename by using square brackets. Inside the
brackets, you can put the individual acceptable characters or ranges of characters. For example, if
you wanted to match LETTER0.DOC through LETTER9.DOC, you could use this command: <code> [c:\]
dir letter[0-9].doc </code> You could find all files that have a vowel as the second letter in their name

http://185.82.219.184/doku/doku.php?id=en:docs:cmd:file:file_exclusion_ranges
http://185.82.219.184/doku/doku.php?id=en:docs:cmd:file:except

Last update: 2014/05/24 08:21 en:docs:cmd:file:wild http://185.82.219.184/doku/doku.php?id=en:docs:cmd:file:wild&rev=1400919715

http://185.82.219.184/doku/ Printed on 2025/07/19 21:28

this way. This example also demonstrates how to mix the wildcard characters: <code> [c:\] dir
?[aeiouy]*.* </code> You can exclude a group of characters or a range of characters by using an
exclamation mark [!] as the first character inside the brackets. This example displays all filenames
that are at least 2 characters long except those which have a vowel as the second letter in their
names: <code> [c:\] dir ?[!aeiouy]*.* </code> The next example, which selects files such as AIP, BIP,
and TIP but not NIP, demonstrates how you can use multiple ranges inside the brackets. It will accept
a file that begins with an A, B, C, D, T, U, or V: <code> [c:\] dir [a-dt-v]ip </code> You may use a
question mark character inside the brackets, but its meaning is slightly different than a normal
(unbracketed) question mark wildcard. A normal question mark wildcard matches any character, but
will be ignored when matching a name shorter than the wildcard specification, as described above. A
question mark inside brackets will match any character, but will not be discarded when matching
shorter filenames. For example: <code> [c:\] dir letter[?].doc </code> will display LETTER1.DOC and
LETTERA.DOC, but not LETTER.DOC. A pair of brackets with no characters between them [], or an
exclamation point and question mark together [!?], will match only if there is no character in that
position. For example, <code> [c:\] dir letter[].doc </code> will not display LETTER1.DOC or
LETTERA.DOC, but will display LETTER.DOC. This is most useful for commands like <code> [c:\] dir
/I“[]” *.btm </code> which will display a list of all .BTM files which don't have a description, because
the empty brackets match only an empty description string (DIR /I selects files to display based on
their descriptions). You can repeat any of the wildcard characters in any combination you desire
within a single file name. For example, the following command lists all files which have an A, B, or C
as the third character, followed by zero or more additional characters, followed by a D, E, or F,
followed optionally by some additional characters, and with an extension beginning with P
or Q. You probably won't need to do anything this complex, but we've included it to show
you the flexibility of extended wildcards: <code> [c:\] dir ??[abc]*[def]*.[pq]* </code> You
can also use the square bracket wildcard syntax to work around a conflict between long
filenames containing semicolons [;], and the use of a semicolon to indicate an include list.
For example, if you have a file on an HPFS drive named C:\DATA\LETTER1;V2 and you enter
this command: <code> [c:\] del \data\letter1;v2 </code> you will not get the results you
expect. Instead of deleting the named file, CMD.EXE** will attempt to delete LETTER1 and then
V2, because the semicolon indicates an include list. However if you use square brackets around the
semicolon it will be interpreted as a filename character, and not as an include list separator. For
example, this command would delete the file named above: <code> [c:\] del \data\letter1[;]v2
</code>

From:
http://185.82.219.184/doku/ - osFree wiki

Permanent link:
http://185.82.219.184/doku/doku.php?id=en:docs:cmd:file:wild&rev=1400919715

Last update: 2014/05/24 08:21

http://185.82.219.184/doku/doku.php?id=en:docs:cmd:file:include_list
http://185.82.219.184/doku/doku.php?id=en:docs:cmd:file:include_list
http://185.82.219.184/doku/
http://185.82.219.184/doku/doku.php?id=en:docs:cmd:file:wild&rev=1400919715

	[Wildcards]
	Wildcards

